1 | /* ---------------------------------------------------------------------- |
---|
2 | * Copyright (C) 2010-2015 ARM Limited. All rights reserved. |
---|
3 | * |
---|
4 | * $Date: 20. October 2015 |
---|
5 | * $Revision: V1.4.5 b |
---|
6 | * |
---|
7 | * Project: CMSIS DSP Library |
---|
8 | * Title: arm_math.h |
---|
9 | * |
---|
10 | * Description: Public header file for CMSIS DSP Library |
---|
11 | * |
---|
12 | * Target Processor: Cortex-M7/Cortex-M4/Cortex-M3/Cortex-M0 |
---|
13 | * |
---|
14 | * Redistribution and use in source and binary forms, with or without |
---|
15 | * modification, are permitted provided that the following conditions |
---|
16 | * are met: |
---|
17 | * - Redistributions of source code must retain the above copyright |
---|
18 | * notice, this list of conditions and the following disclaimer. |
---|
19 | * - Redistributions in binary form must reproduce the above copyright |
---|
20 | * notice, this list of conditions and the following disclaimer in |
---|
21 | * the documentation and/or other materials provided with the |
---|
22 | * distribution. |
---|
23 | * - Neither the name of ARM LIMITED nor the names of its contributors |
---|
24 | * may be used to endorse or promote products derived from this |
---|
25 | * software without specific prior written permission. |
---|
26 | * |
---|
27 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
28 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
29 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
---|
30 | * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
---|
31 | * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
---|
32 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
---|
33 | * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
---|
34 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
---|
35 | * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
---|
36 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
---|
37 | * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
---|
38 | * POSSIBILITY OF SUCH DAMAGE. |
---|
39 | * -------------------------------------------------------------------- */ |
---|
40 | |
---|
41 | /** |
---|
42 | \mainpage CMSIS DSP Software Library |
---|
43 | * |
---|
44 | * Introduction |
---|
45 | * ------------ |
---|
46 | * |
---|
47 | * This user manual describes the CMSIS DSP software library, |
---|
48 | * a suite of common signal processing functions for use on Cortex-M processor based devices. |
---|
49 | * |
---|
50 | * The library is divided into a number of functions each covering a specific category: |
---|
51 | * - Basic math functions |
---|
52 | * - Fast math functions |
---|
53 | * - Complex math functions |
---|
54 | * - Filters |
---|
55 | * - Matrix functions |
---|
56 | * - Transforms |
---|
57 | * - Motor control functions |
---|
58 | * - Statistical functions |
---|
59 | * - Support functions |
---|
60 | * - Interpolation functions |
---|
61 | * |
---|
62 | * The library has separate functions for operating on 8-bit integers, 16-bit integers, |
---|
63 | * 32-bit integer and 32-bit floating-point values. |
---|
64 | * |
---|
65 | * Using the Library |
---|
66 | * ------------ |
---|
67 | * |
---|
68 | * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder. |
---|
69 | * - arm_cortexM7lfdp_math.lib (Little endian and Double Precision Floating Point Unit on Cortex-M7) |
---|
70 | * - arm_cortexM7bfdp_math.lib (Big endian and Double Precision Floating Point Unit on Cortex-M7) |
---|
71 | * - arm_cortexM7lfsp_math.lib (Little endian and Single Precision Floating Point Unit on Cortex-M7) |
---|
72 | * - arm_cortexM7bfsp_math.lib (Big endian and Single Precision Floating Point Unit on Cortex-M7) |
---|
73 | * - arm_cortexM7l_math.lib (Little endian on Cortex-M7) |
---|
74 | * - arm_cortexM7b_math.lib (Big endian on Cortex-M7) |
---|
75 | * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4) |
---|
76 | * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4) |
---|
77 | * - arm_cortexM4l_math.lib (Little endian on Cortex-M4) |
---|
78 | * - arm_cortexM4b_math.lib (Big endian on Cortex-M4) |
---|
79 | * - arm_cortexM3l_math.lib (Little endian on Cortex-M3) |
---|
80 | * - arm_cortexM3b_math.lib (Big endian on Cortex-M3) |
---|
81 | * - arm_cortexM0l_math.lib (Little endian on Cortex-M0 / CortexM0+) |
---|
82 | * - arm_cortexM0b_math.lib (Big endian on Cortex-M0 / CortexM0+) |
---|
83 | * |
---|
84 | * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder. |
---|
85 | * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single |
---|
86 | * public header file <code> arm_math.h</code> for Cortex-M7/M4/M3/M0/M0+ with little endian and big endian. Same header file will be used for floating point unit(FPU) variants. |
---|
87 | * Define the appropriate pre processor MACRO ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or |
---|
88 | * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application. |
---|
89 | * |
---|
90 | * Examples |
---|
91 | * -------- |
---|
92 | * |
---|
93 | * The library ships with a number of examples which demonstrate how to use the library functions. |
---|
94 | * |
---|
95 | * Toolchain Support |
---|
96 | * ------------ |
---|
97 | * |
---|
98 | * The library has been developed and tested with MDK-ARM version 5.14.0.0 |
---|
99 | * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly. |
---|
100 | * |
---|
101 | * Building the Library |
---|
102 | * ------------ |
---|
103 | * |
---|
104 | * The library installer contains a project file to re build libraries on MDK-ARM Tool chain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder. |
---|
105 | * - arm_cortexM_math.uvprojx |
---|
106 | * |
---|
107 | * |
---|
108 | * The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional pre processor MACROs detailed above. |
---|
109 | * |
---|
110 | * Pre-processor Macros |
---|
111 | * ------------ |
---|
112 | * |
---|
113 | * Each library project have differant pre-processor macros. |
---|
114 | * |
---|
115 | * - UNALIGNED_SUPPORT_DISABLE: |
---|
116 | * |
---|
117 | * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access |
---|
118 | * |
---|
119 | * - ARM_MATH_BIG_ENDIAN: |
---|
120 | * |
---|
121 | * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets. |
---|
122 | * |
---|
123 | * - ARM_MATH_MATRIX_CHECK: |
---|
124 | * |
---|
125 | * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices |
---|
126 | * |
---|
127 | * - ARM_MATH_ROUNDING: |
---|
128 | * |
---|
129 | * Define macro ARM_MATH_ROUNDING for rounding on support functions |
---|
130 | * |
---|
131 | * - ARM_MATH_CMx: |
---|
132 | * |
---|
133 | * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target |
---|
134 | * and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and |
---|
135 | * ARM_MATH_CM7 for building the library on cortex-M7. |
---|
136 | * |
---|
137 | * - __FPU_PRESENT: |
---|
138 | * |
---|
139 | * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries |
---|
140 | * |
---|
141 | * <hr> |
---|
142 | * CMSIS-DSP in ARM::CMSIS Pack |
---|
143 | * ----------------------------- |
---|
144 | * |
---|
145 | * The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories: |
---|
146 | * |File/Folder |Content | |
---|
147 | * |------------------------------|------------------------------------------------------------------------| |
---|
148 | * |\b CMSIS\\Documentation\\DSP | This documentation | |
---|
149 | * |\b CMSIS\\DSP_Lib | Software license agreement (license.txt) | |
---|
150 | * |\b CMSIS\\DSP_Lib\\Examples | Example projects demonstrating the usage of the library functions | |
---|
151 | * |\b CMSIS\\DSP_Lib\\Source | Source files for rebuilding the library | |
---|
152 | * |
---|
153 | * <hr> |
---|
154 | * Revision History of CMSIS-DSP |
---|
155 | * ------------ |
---|
156 | * Please refer to \ref ChangeLog_pg. |
---|
157 | * |
---|
158 | * Copyright Notice |
---|
159 | * ------------ |
---|
160 | * |
---|
161 | * Copyright (C) 2010-2015 ARM Limited. All rights reserved. |
---|
162 | */ |
---|
163 | |
---|
164 | |
---|
165 | /** |
---|
166 | * @defgroup groupMath Basic Math Functions |
---|
167 | */ |
---|
168 | |
---|
169 | /** |
---|
170 | * @defgroup groupFastMath Fast Math Functions |
---|
171 | * This set of functions provides a fast approximation to sine, cosine, and square root. |
---|
172 | * As compared to most of the other functions in the CMSIS math library, the fast math functions |
---|
173 | * operate on individual values and not arrays. |
---|
174 | * There are separate functions for Q15, Q31, and floating-point data. |
---|
175 | * |
---|
176 | */ |
---|
177 | |
---|
178 | /** |
---|
179 | * @defgroup groupCmplxMath Complex Math Functions |
---|
180 | * This set of functions operates on complex data vectors. |
---|
181 | * The data in the complex arrays is stored in an interleaved fashion |
---|
182 | * (real, imag, real, imag, ...). |
---|
183 | * In the API functions, the number of samples in a complex array refers |
---|
184 | * to the number of complex values; the array contains twice this number of |
---|
185 | * real values. |
---|
186 | */ |
---|
187 | |
---|
188 | /** |
---|
189 | * @defgroup groupFilters Filtering Functions |
---|
190 | */ |
---|
191 | |
---|
192 | /** |
---|
193 | * @defgroup groupMatrix Matrix Functions |
---|
194 | * |
---|
195 | * This set of functions provides basic matrix math operations. |
---|
196 | * The functions operate on matrix data structures. For example, |
---|
197 | * the type |
---|
198 | * definition for the floating-point matrix structure is shown |
---|
199 | * below: |
---|
200 | * <pre> |
---|
201 | * typedef struct |
---|
202 | * { |
---|
203 | * uint16_t numRows; // number of rows of the matrix. |
---|
204 | * uint16_t numCols; // number of columns of the matrix. |
---|
205 | * float32_t *pData; // points to the data of the matrix. |
---|
206 | * } arm_matrix_instance_f32; |
---|
207 | * </pre> |
---|
208 | * There are similar definitions for Q15 and Q31 data types. |
---|
209 | * |
---|
210 | * The structure specifies the size of the matrix and then points to |
---|
211 | * an array of data. The array is of size <code>numRows X numCols</code> |
---|
212 | * and the values are arranged in row order. That is, the |
---|
213 | * matrix element (i, j) is stored at: |
---|
214 | * <pre> |
---|
215 | * pData[i*numCols + j] |
---|
216 | * </pre> |
---|
217 | * |
---|
218 | * \par Init Functions |
---|
219 | * There is an associated initialization function for each type of matrix |
---|
220 | * data structure. |
---|
221 | * The initialization function sets the values of the internal structure fields. |
---|
222 | * Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code> |
---|
223 | * and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively. |
---|
224 | * |
---|
225 | * \par |
---|
226 | * Use of the initialization function is optional. However, if initialization function is used |
---|
227 | * then the instance structure cannot be placed into a const data section. |
---|
228 | * To place the instance structure in a const data |
---|
229 | * section, manually initialize the data structure. For example: |
---|
230 | * <pre> |
---|
231 | * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code> |
---|
232 | * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code> |
---|
233 | * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code> |
---|
234 | * </pre> |
---|
235 | * where <code>nRows</code> specifies the number of rows, <code>nColumns</code> |
---|
236 | * specifies the number of columns, and <code>pData</code> points to the |
---|
237 | * data array. |
---|
238 | * |
---|
239 | * \par Size Checking |
---|
240 | * By default all of the matrix functions perform size checking on the input and |
---|
241 | * output matrices. For example, the matrix addition function verifies that the |
---|
242 | * two input matrices and the output matrix all have the same number of rows and |
---|
243 | * columns. If the size check fails the functions return: |
---|
244 | * <pre> |
---|
245 | * ARM_MATH_SIZE_MISMATCH |
---|
246 | * </pre> |
---|
247 | * Otherwise the functions return |
---|
248 | * <pre> |
---|
249 | * ARM_MATH_SUCCESS |
---|
250 | * </pre> |
---|
251 | * There is some overhead associated with this matrix size checking. |
---|
252 | * The matrix size checking is enabled via the \#define |
---|
253 | * <pre> |
---|
254 | * ARM_MATH_MATRIX_CHECK |
---|
255 | * </pre> |
---|
256 | * within the library project settings. By default this macro is defined |
---|
257 | * and size checking is enabled. By changing the project settings and |
---|
258 | * undefining this macro size checking is eliminated and the functions |
---|
259 | * run a bit faster. With size checking disabled the functions always |
---|
260 | * return <code>ARM_MATH_SUCCESS</code>. |
---|
261 | */ |
---|
262 | |
---|
263 | /** |
---|
264 | * @defgroup groupTransforms Transform Functions |
---|
265 | */ |
---|
266 | |
---|
267 | /** |
---|
268 | * @defgroup groupController Controller Functions |
---|
269 | */ |
---|
270 | |
---|
271 | /** |
---|
272 | * @defgroup groupStats Statistics Functions |
---|
273 | */ |
---|
274 | /** |
---|
275 | * @defgroup groupSupport Support Functions |
---|
276 | */ |
---|
277 | |
---|
278 | /** |
---|
279 | * @defgroup groupInterpolation Interpolation Functions |
---|
280 | * These functions perform 1- and 2-dimensional interpolation of data. |
---|
281 | * Linear interpolation is used for 1-dimensional data and |
---|
282 | * bilinear interpolation is used for 2-dimensional data. |
---|
283 | */ |
---|
284 | |
---|
285 | /** |
---|
286 | * @defgroup groupExamples Examples |
---|
287 | */ |
---|
288 | #ifndef _ARM_MATH_H |
---|
289 | #define _ARM_MATH_H |
---|
290 | |
---|
291 | /* ignore some GCC warnings */ |
---|
292 | #if defined ( __GNUC__ ) |
---|
293 | #pragma GCC diagnostic push |
---|
294 | #pragma GCC diagnostic ignored "-Wsign-conversion" |
---|
295 | #pragma GCC diagnostic ignored "-Wconversion" |
---|
296 | #pragma GCC diagnostic ignored "-Wunused-parameter" |
---|
297 | #endif |
---|
298 | |
---|
299 | #define __CMSIS_GENERIC /* disable NVIC and Systick functions */ |
---|
300 | |
---|
301 | #if defined(ARM_MATH_CM7) |
---|
302 | #include "core_cm7.h" |
---|
303 | #elif defined (ARM_MATH_CM4) |
---|
304 | #include "core_cm4.h" |
---|
305 | #elif defined (ARM_MATH_CM3) |
---|
306 | #include "core_cm3.h" |
---|
307 | #elif defined (ARM_MATH_CM0) |
---|
308 | #include "core_cm0.h" |
---|
309 | #define ARM_MATH_CM0_FAMILY |
---|
310 | #elif defined (ARM_MATH_CM0PLUS) |
---|
311 | #include "core_cm0plus.h" |
---|
312 | #define ARM_MATH_CM0_FAMILY |
---|
313 | #else |
---|
314 | #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0" |
---|
315 | #endif |
---|
316 | |
---|
317 | #undef __CMSIS_GENERIC /* enable NVIC and Systick functions */ |
---|
318 | #include "string.h" |
---|
319 | #include "math.h" |
---|
320 | #ifdef __cplusplus |
---|
321 | extern "C" |
---|
322 | { |
---|
323 | #endif |
---|
324 | |
---|
325 | |
---|
326 | /** |
---|
327 | * @brief Macros required for reciprocal calculation in Normalized LMS |
---|
328 | */ |
---|
329 | |
---|
330 | #define DELTA_Q31 (0x100) |
---|
331 | #define DELTA_Q15 0x5 |
---|
332 | #define INDEX_MASK 0x0000003F |
---|
333 | #ifndef PI |
---|
334 | #define PI 3.14159265358979f |
---|
335 | #endif |
---|
336 | |
---|
337 | /** |
---|
338 | * @brief Macros required for SINE and COSINE Fast math approximations |
---|
339 | */ |
---|
340 | |
---|
341 | #define FAST_MATH_TABLE_SIZE 512 |
---|
342 | #define FAST_MATH_Q31_SHIFT (32 - 10) |
---|
343 | #define FAST_MATH_Q15_SHIFT (16 - 10) |
---|
344 | #define CONTROLLER_Q31_SHIFT (32 - 9) |
---|
345 | #define TABLE_SIZE 256 |
---|
346 | #define TABLE_SPACING_Q31 0x400000 |
---|
347 | #define TABLE_SPACING_Q15 0x80 |
---|
348 | |
---|
349 | /** |
---|
350 | * @brief Macros required for SINE and COSINE Controller functions |
---|
351 | */ |
---|
352 | /* 1.31(q31) Fixed value of 2/360 */ |
---|
353 | /* -1 to +1 is divided into 360 values so total spacing is (2/360) */ |
---|
354 | #define INPUT_SPACING 0xB60B61 |
---|
355 | |
---|
356 | /** |
---|
357 | * @brief Macro for Unaligned Support |
---|
358 | */ |
---|
359 | #ifndef UNALIGNED_SUPPORT_DISABLE |
---|
360 | #define ALIGN4 |
---|
361 | #else |
---|
362 | #if defined (__GNUC__) |
---|
363 | #define ALIGN4 __attribute__((aligned(4))) |
---|
364 | #else |
---|
365 | #define ALIGN4 __align(4) |
---|
366 | #endif |
---|
367 | #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ |
---|
368 | |
---|
369 | /** |
---|
370 | * @brief Error status returned by some functions in the library. |
---|
371 | */ |
---|
372 | |
---|
373 | typedef enum |
---|
374 | { |
---|
375 | ARM_MATH_SUCCESS = 0, /**< No error */ |
---|
376 | ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */ |
---|
377 | ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */ |
---|
378 | ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */ |
---|
379 | ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */ |
---|
380 | ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */ |
---|
381 | ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */ |
---|
382 | } arm_status; |
---|
383 | |
---|
384 | /** |
---|
385 | * @brief 8-bit fractional data type in 1.7 format. |
---|
386 | */ |
---|
387 | typedef int8_t q7_t; |
---|
388 | |
---|
389 | /** |
---|
390 | * @brief 16-bit fractional data type in 1.15 format. |
---|
391 | */ |
---|
392 | typedef int16_t q15_t; |
---|
393 | |
---|
394 | /** |
---|
395 | * @brief 32-bit fractional data type in 1.31 format. |
---|
396 | */ |
---|
397 | typedef int32_t q31_t; |
---|
398 | |
---|
399 | /** |
---|
400 | * @brief 64-bit fractional data type in 1.63 format. |
---|
401 | */ |
---|
402 | typedef int64_t q63_t; |
---|
403 | |
---|
404 | /** |
---|
405 | * @brief 32-bit floating-point type definition. |
---|
406 | */ |
---|
407 | typedef float float32_t; |
---|
408 | |
---|
409 | /** |
---|
410 | * @brief 64-bit floating-point type definition. |
---|
411 | */ |
---|
412 | typedef double float64_t; |
---|
413 | |
---|
414 | /** |
---|
415 | * @brief definition to read/write two 16 bit values. |
---|
416 | */ |
---|
417 | #if defined __CC_ARM |
---|
418 | #define __SIMD32_TYPE int32_t __packed |
---|
419 | #define CMSIS_UNUSED __attribute__((unused)) |
---|
420 | |
---|
421 | #elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) |
---|
422 | #define __SIMD32_TYPE int32_t |
---|
423 | #define CMSIS_UNUSED __attribute__((unused)) |
---|
424 | |
---|
425 | #elif defined __GNUC__ |
---|
426 | #define __SIMD32_TYPE int32_t |
---|
427 | #define CMSIS_UNUSED __attribute__((unused)) |
---|
428 | |
---|
429 | #elif defined __ICCARM__ |
---|
430 | #define __SIMD32_TYPE int32_t __packed |
---|
431 | #define CMSIS_UNUSED |
---|
432 | |
---|
433 | #elif defined __CSMC__ |
---|
434 | #define __SIMD32_TYPE int32_t |
---|
435 | #define CMSIS_UNUSED |
---|
436 | |
---|
437 | #elif defined __TASKING__ |
---|
438 | #define __SIMD32_TYPE __unaligned int32_t |
---|
439 | #define CMSIS_UNUSED |
---|
440 | |
---|
441 | #else |
---|
442 | #error Unknown compiler |
---|
443 | #endif |
---|
444 | |
---|
445 | #define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr)) |
---|
446 | #define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr)) |
---|
447 | #define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr)) |
---|
448 | #define __SIMD64(addr) (*(int64_t **) & (addr)) |
---|
449 | |
---|
450 | #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) |
---|
451 | /** |
---|
452 | * @brief definition to pack two 16 bit values. |
---|
453 | */ |
---|
454 | #define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \ |
---|
455 | (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) ) |
---|
456 | #define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \ |
---|
457 | (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) ) |
---|
458 | |
---|
459 | #endif |
---|
460 | |
---|
461 | |
---|
462 | /** |
---|
463 | * @brief definition to pack four 8 bit values. |
---|
464 | */ |
---|
465 | #ifndef ARM_MATH_BIG_ENDIAN |
---|
466 | |
---|
467 | #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \ |
---|
468 | (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \ |
---|
469 | (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \ |
---|
470 | (((int32_t)(v3) << 24) & (int32_t)0xFF000000) ) |
---|
471 | #else |
---|
472 | |
---|
473 | #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \ |
---|
474 | (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \ |
---|
475 | (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \ |
---|
476 | (((int32_t)(v0) << 24) & (int32_t)0xFF000000) ) |
---|
477 | |
---|
478 | #endif |
---|
479 | |
---|
480 | |
---|
481 | /** |
---|
482 | * @brief Clips Q63 to Q31 values. |
---|
483 | */ |
---|
484 | static __INLINE q31_t clip_q63_to_q31( |
---|
485 | q63_t x) |
---|
486 | { |
---|
487 | return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? |
---|
488 | ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x; |
---|
489 | } |
---|
490 | |
---|
491 | /** |
---|
492 | * @brief Clips Q63 to Q15 values. |
---|
493 | */ |
---|
494 | static __INLINE q15_t clip_q63_to_q15( |
---|
495 | q63_t x) |
---|
496 | { |
---|
497 | return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ? |
---|
498 | ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15); |
---|
499 | } |
---|
500 | |
---|
501 | /** |
---|
502 | * @brief Clips Q31 to Q7 values. |
---|
503 | */ |
---|
504 | static __INLINE q7_t clip_q31_to_q7( |
---|
505 | q31_t x) |
---|
506 | { |
---|
507 | return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ? |
---|
508 | ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x; |
---|
509 | } |
---|
510 | |
---|
511 | /** |
---|
512 | * @brief Clips Q31 to Q15 values. |
---|
513 | */ |
---|
514 | static __INLINE q15_t clip_q31_to_q15( |
---|
515 | q31_t x) |
---|
516 | { |
---|
517 | return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ? |
---|
518 | ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x; |
---|
519 | } |
---|
520 | |
---|
521 | /** |
---|
522 | * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format. |
---|
523 | */ |
---|
524 | |
---|
525 | static __INLINE q63_t mult32x64( |
---|
526 | q63_t x, |
---|
527 | q31_t y) |
---|
528 | { |
---|
529 | return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) + |
---|
530 | (((q63_t) (x >> 32) * y))); |
---|
531 | } |
---|
532 | |
---|
533 | /* |
---|
534 | #if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM ) |
---|
535 | #define __CLZ __clz |
---|
536 | #endif |
---|
537 | */ |
---|
538 | /* note: function can be removed when all toolchain support __CLZ for Cortex-M0 */ |
---|
539 | #if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) ) |
---|
540 | static __INLINE uint32_t __CLZ( |
---|
541 | q31_t data); |
---|
542 | |
---|
543 | static __INLINE uint32_t __CLZ( |
---|
544 | q31_t data) |
---|
545 | { |
---|
546 | uint32_t count = 0; |
---|
547 | uint32_t mask = 0x80000000; |
---|
548 | |
---|
549 | while((data & mask) == 0) |
---|
550 | { |
---|
551 | count += 1u; |
---|
552 | mask = mask >> 1u; |
---|
553 | } |
---|
554 | |
---|
555 | return (count); |
---|
556 | } |
---|
557 | #endif |
---|
558 | |
---|
559 | /** |
---|
560 | * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type. |
---|
561 | */ |
---|
562 | |
---|
563 | static __INLINE uint32_t arm_recip_q31( |
---|
564 | q31_t in, |
---|
565 | q31_t * dst, |
---|
566 | q31_t * pRecipTable) |
---|
567 | { |
---|
568 | q31_t out; |
---|
569 | uint32_t tempVal; |
---|
570 | uint32_t index, i; |
---|
571 | uint32_t signBits; |
---|
572 | |
---|
573 | if(in > 0) |
---|
574 | { |
---|
575 | signBits = ((uint32_t) (__CLZ( in) - 1)); |
---|
576 | } |
---|
577 | else |
---|
578 | { |
---|
579 | signBits = ((uint32_t) (__CLZ(-in) - 1)); |
---|
580 | } |
---|
581 | |
---|
582 | /* Convert input sample to 1.31 format */ |
---|
583 | in = (in << signBits); |
---|
584 | |
---|
585 | /* calculation of index for initial approximated Val */ |
---|
586 | index = (uint32_t)(in >> 24); |
---|
587 | index = (index & INDEX_MASK); |
---|
588 | |
---|
589 | /* 1.31 with exp 1 */ |
---|
590 | out = pRecipTable[index]; |
---|
591 | |
---|
592 | /* calculation of reciprocal value */ |
---|
593 | /* running approximation for two iterations */ |
---|
594 | for (i = 0u; i < 2u; i++) |
---|
595 | { |
---|
596 | tempVal = (uint32_t) (((q63_t) in * out) >> 31); |
---|
597 | tempVal = 0x7FFFFFFFu - tempVal; |
---|
598 | /* 1.31 with exp 1 */ |
---|
599 | /* out = (q31_t) (((q63_t) out * tempVal) >> 30); */ |
---|
600 | out = clip_q63_to_q31(((q63_t) out * tempVal) >> 30); |
---|
601 | } |
---|
602 | |
---|
603 | /* write output */ |
---|
604 | *dst = out; |
---|
605 | |
---|
606 | /* return num of signbits of out = 1/in value */ |
---|
607 | return (signBits + 1u); |
---|
608 | } |
---|
609 | |
---|
610 | |
---|
611 | /** |
---|
612 | * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type. |
---|
613 | */ |
---|
614 | static __INLINE uint32_t arm_recip_q15( |
---|
615 | q15_t in, |
---|
616 | q15_t * dst, |
---|
617 | q15_t * pRecipTable) |
---|
618 | { |
---|
619 | q15_t out = 0; |
---|
620 | uint32_t tempVal = 0; |
---|
621 | uint32_t index = 0, i = 0; |
---|
622 | uint32_t signBits = 0; |
---|
623 | |
---|
624 | if(in > 0) |
---|
625 | { |
---|
626 | signBits = ((uint32_t)(__CLZ( in) - 17)); |
---|
627 | } |
---|
628 | else |
---|
629 | { |
---|
630 | signBits = ((uint32_t)(__CLZ(-in) - 17)); |
---|
631 | } |
---|
632 | |
---|
633 | /* Convert input sample to 1.15 format */ |
---|
634 | in = (in << signBits); |
---|
635 | |
---|
636 | /* calculation of index for initial approximated Val */ |
---|
637 | index = (uint32_t)(in >> 8); |
---|
638 | index = (index & INDEX_MASK); |
---|
639 | |
---|
640 | /* 1.15 with exp 1 */ |
---|
641 | out = pRecipTable[index]; |
---|
642 | |
---|
643 | /* calculation of reciprocal value */ |
---|
644 | /* running approximation for two iterations */ |
---|
645 | for (i = 0u; i < 2u; i++) |
---|
646 | { |
---|
647 | tempVal = (uint32_t) (((q31_t) in * out) >> 15); |
---|
648 | tempVal = 0x7FFFu - tempVal; |
---|
649 | /* 1.15 with exp 1 */ |
---|
650 | out = (q15_t) (((q31_t) out * tempVal) >> 14); |
---|
651 | /* out = clip_q31_to_q15(((q31_t) out * tempVal) >> 14); */ |
---|
652 | } |
---|
653 | |
---|
654 | /* write output */ |
---|
655 | *dst = out; |
---|
656 | |
---|
657 | /* return num of signbits of out = 1/in value */ |
---|
658 | return (signBits + 1); |
---|
659 | } |
---|
660 | |
---|
661 | |
---|
662 | /* |
---|
663 | * @brief C custom defined intrinisic function for only M0 processors |
---|
664 | */ |
---|
665 | #if defined(ARM_MATH_CM0_FAMILY) |
---|
666 | static __INLINE q31_t __SSAT( |
---|
667 | q31_t x, |
---|
668 | uint32_t y) |
---|
669 | { |
---|
670 | int32_t posMax, negMin; |
---|
671 | uint32_t i; |
---|
672 | |
---|
673 | posMax = 1; |
---|
674 | for (i = 0; i < (y - 1); i++) |
---|
675 | { |
---|
676 | posMax = posMax * 2; |
---|
677 | } |
---|
678 | |
---|
679 | if(x > 0) |
---|
680 | { |
---|
681 | posMax = (posMax - 1); |
---|
682 | |
---|
683 | if(x > posMax) |
---|
684 | { |
---|
685 | x = posMax; |
---|
686 | } |
---|
687 | } |
---|
688 | else |
---|
689 | { |
---|
690 | negMin = -posMax; |
---|
691 | |
---|
692 | if(x < negMin) |
---|
693 | { |
---|
694 | x = negMin; |
---|
695 | } |
---|
696 | } |
---|
697 | return (x); |
---|
698 | } |
---|
699 | #endif /* end of ARM_MATH_CM0_FAMILY */ |
---|
700 | |
---|
701 | |
---|
702 | /* |
---|
703 | * @brief C custom defined intrinsic function for M3 and M0 processors |
---|
704 | */ |
---|
705 | #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) |
---|
706 | |
---|
707 | /* |
---|
708 | * @brief C custom defined QADD8 for M3 and M0 processors |
---|
709 | */ |
---|
710 | static __INLINE uint32_t __QADD8( |
---|
711 | uint32_t x, |
---|
712 | uint32_t y) |
---|
713 | { |
---|
714 | q31_t r, s, t, u; |
---|
715 | |
---|
716 | r = __SSAT(((((q31_t)x << 24) >> 24) + (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF; |
---|
717 | s = __SSAT(((((q31_t)x << 16) >> 24) + (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF; |
---|
718 | t = __SSAT(((((q31_t)x << 8) >> 24) + (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF; |
---|
719 | u = __SSAT(((((q31_t)x ) >> 24) + (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF; |
---|
720 | |
---|
721 | return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r ))); |
---|
722 | } |
---|
723 | |
---|
724 | |
---|
725 | /* |
---|
726 | * @brief C custom defined QSUB8 for M3 and M0 processors |
---|
727 | */ |
---|
728 | static __INLINE uint32_t __QSUB8( |
---|
729 | uint32_t x, |
---|
730 | uint32_t y) |
---|
731 | { |
---|
732 | q31_t r, s, t, u; |
---|
733 | |
---|
734 | r = __SSAT(((((q31_t)x << 24) >> 24) - (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF; |
---|
735 | s = __SSAT(((((q31_t)x << 16) >> 24) - (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF; |
---|
736 | t = __SSAT(((((q31_t)x << 8) >> 24) - (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF; |
---|
737 | u = __SSAT(((((q31_t)x ) >> 24) - (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF; |
---|
738 | |
---|
739 | return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r ))); |
---|
740 | } |
---|
741 | |
---|
742 | |
---|
743 | /* |
---|
744 | * @brief C custom defined QADD16 for M3 and M0 processors |
---|
745 | */ |
---|
746 | static __INLINE uint32_t __QADD16( |
---|
747 | uint32_t x, |
---|
748 | uint32_t y) |
---|
749 | { |
---|
750 | /* q31_t r, s; without initialisation 'arm_offset_q15 test' fails but 'intrinsic' tests pass! for armCC */ |
---|
751 | q31_t r = 0, s = 0; |
---|
752 | |
---|
753 | r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; |
---|
754 | s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; |
---|
755 | |
---|
756 | return ((uint32_t)((s << 16) | (r ))); |
---|
757 | } |
---|
758 | |
---|
759 | |
---|
760 | /* |
---|
761 | * @brief C custom defined SHADD16 for M3 and M0 processors |
---|
762 | */ |
---|
763 | static __INLINE uint32_t __SHADD16( |
---|
764 | uint32_t x, |
---|
765 | uint32_t y) |
---|
766 | { |
---|
767 | q31_t r, s; |
---|
768 | |
---|
769 | r = (((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
---|
770 | s = (((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
---|
771 | |
---|
772 | return ((uint32_t)((s << 16) | (r ))); |
---|
773 | } |
---|
774 | |
---|
775 | |
---|
776 | /* |
---|
777 | * @brief C custom defined QSUB16 for M3 and M0 processors |
---|
778 | */ |
---|
779 | static __INLINE uint32_t __QSUB16( |
---|
780 | uint32_t x, |
---|
781 | uint32_t y) |
---|
782 | { |
---|
783 | q31_t r, s; |
---|
784 | |
---|
785 | r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; |
---|
786 | s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; |
---|
787 | |
---|
788 | return ((uint32_t)((s << 16) | (r ))); |
---|
789 | } |
---|
790 | |
---|
791 | |
---|
792 | /* |
---|
793 | * @brief C custom defined SHSUB16 for M3 and M0 processors |
---|
794 | */ |
---|
795 | static __INLINE uint32_t __SHSUB16( |
---|
796 | uint32_t x, |
---|
797 | uint32_t y) |
---|
798 | { |
---|
799 | q31_t r, s; |
---|
800 | |
---|
801 | r = (((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
---|
802 | s = (((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
---|
803 | |
---|
804 | return ((uint32_t)((s << 16) | (r ))); |
---|
805 | } |
---|
806 | |
---|
807 | |
---|
808 | /* |
---|
809 | * @brief C custom defined QASX for M3 and M0 processors |
---|
810 | */ |
---|
811 | static __INLINE uint32_t __QASX( |
---|
812 | uint32_t x, |
---|
813 | uint32_t y) |
---|
814 | { |
---|
815 | q31_t r, s; |
---|
816 | |
---|
817 | r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; |
---|
818 | s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; |
---|
819 | |
---|
820 | return ((uint32_t)((s << 16) | (r ))); |
---|
821 | } |
---|
822 | |
---|
823 | |
---|
824 | /* |
---|
825 | * @brief C custom defined SHASX for M3 and M0 processors |
---|
826 | */ |
---|
827 | static __INLINE uint32_t __SHASX( |
---|
828 | uint32_t x, |
---|
829 | uint32_t y) |
---|
830 | { |
---|
831 | q31_t r, s; |
---|
832 | |
---|
833 | r = (((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
---|
834 | s = (((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
---|
835 | |
---|
836 | return ((uint32_t)((s << 16) | (r ))); |
---|
837 | } |
---|
838 | |
---|
839 | |
---|
840 | /* |
---|
841 | * @brief C custom defined QSAX for M3 and M0 processors |
---|
842 | */ |
---|
843 | static __INLINE uint32_t __QSAX( |
---|
844 | uint32_t x, |
---|
845 | uint32_t y) |
---|
846 | { |
---|
847 | q31_t r, s; |
---|
848 | |
---|
849 | r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF; |
---|
850 | s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF; |
---|
851 | |
---|
852 | return ((uint32_t)((s << 16) | (r ))); |
---|
853 | } |
---|
854 | |
---|
855 | |
---|
856 | /* |
---|
857 | * @brief C custom defined SHSAX for M3 and M0 processors |
---|
858 | */ |
---|
859 | static __INLINE uint32_t __SHSAX( |
---|
860 | uint32_t x, |
---|
861 | uint32_t y) |
---|
862 | { |
---|
863 | q31_t r, s; |
---|
864 | |
---|
865 | r = (((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
---|
866 | s = (((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF; |
---|
867 | |
---|
868 | return ((uint32_t)((s << 16) | (r ))); |
---|
869 | } |
---|
870 | |
---|
871 | |
---|
872 | /* |
---|
873 | * @brief C custom defined SMUSDX for M3 and M0 processors |
---|
874 | */ |
---|
875 | static __INLINE uint32_t __SMUSDX( |
---|
876 | uint32_t x, |
---|
877 | uint32_t y) |
---|
878 | { |
---|
879 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) - |
---|
880 | ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) )); |
---|
881 | } |
---|
882 | |
---|
883 | /* |
---|
884 | * @brief C custom defined SMUADX for M3 and M0 processors |
---|
885 | */ |
---|
886 | static __INLINE uint32_t __SMUADX( |
---|
887 | uint32_t x, |
---|
888 | uint32_t y) |
---|
889 | { |
---|
890 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + |
---|
891 | ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) )); |
---|
892 | } |
---|
893 | |
---|
894 | |
---|
895 | /* |
---|
896 | * @brief C custom defined QADD for M3 and M0 processors |
---|
897 | */ |
---|
898 | static __INLINE int32_t __QADD( |
---|
899 | int32_t x, |
---|
900 | int32_t y) |
---|
901 | { |
---|
902 | return ((int32_t)(clip_q63_to_q31((q63_t)x + (q31_t)y))); |
---|
903 | } |
---|
904 | |
---|
905 | |
---|
906 | /* |
---|
907 | * @brief C custom defined QSUB for M3 and M0 processors |
---|
908 | */ |
---|
909 | static __INLINE int32_t __QSUB( |
---|
910 | int32_t x, |
---|
911 | int32_t y) |
---|
912 | { |
---|
913 | return ((int32_t)(clip_q63_to_q31((q63_t)x - (q31_t)y))); |
---|
914 | } |
---|
915 | |
---|
916 | |
---|
917 | /* |
---|
918 | * @brief C custom defined SMLAD for M3 and M0 processors |
---|
919 | */ |
---|
920 | static __INLINE uint32_t __SMLAD( |
---|
921 | uint32_t x, |
---|
922 | uint32_t y, |
---|
923 | uint32_t sum) |
---|
924 | { |
---|
925 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + |
---|
926 | ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) + |
---|
927 | ( ((q31_t)sum ) ) )); |
---|
928 | } |
---|
929 | |
---|
930 | |
---|
931 | /* |
---|
932 | * @brief C custom defined SMLADX for M3 and M0 processors |
---|
933 | */ |
---|
934 | static __INLINE uint32_t __SMLADX( |
---|
935 | uint32_t x, |
---|
936 | uint32_t y, |
---|
937 | uint32_t sum) |
---|
938 | { |
---|
939 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + |
---|
940 | ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + |
---|
941 | ( ((q31_t)sum ) ) )); |
---|
942 | } |
---|
943 | |
---|
944 | |
---|
945 | /* |
---|
946 | * @brief C custom defined SMLSDX for M3 and M0 processors |
---|
947 | */ |
---|
948 | static __INLINE uint32_t __SMLSDX( |
---|
949 | uint32_t x, |
---|
950 | uint32_t y, |
---|
951 | uint32_t sum) |
---|
952 | { |
---|
953 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) - |
---|
954 | ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + |
---|
955 | ( ((q31_t)sum ) ) )); |
---|
956 | } |
---|
957 | |
---|
958 | |
---|
959 | /* |
---|
960 | * @brief C custom defined SMLALD for M3 and M0 processors |
---|
961 | */ |
---|
962 | static __INLINE uint64_t __SMLALD( |
---|
963 | uint32_t x, |
---|
964 | uint32_t y, |
---|
965 | uint64_t sum) |
---|
966 | { |
---|
967 | /* return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + ((q15_t) x * (q15_t) y)); */ |
---|
968 | return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + |
---|
969 | ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) + |
---|
970 | ( ((q63_t)sum ) ) )); |
---|
971 | } |
---|
972 | |
---|
973 | |
---|
974 | /* |
---|
975 | * @brief C custom defined SMLALDX for M3 and M0 processors |
---|
976 | */ |
---|
977 | static __INLINE uint64_t __SMLALDX( |
---|
978 | uint32_t x, |
---|
979 | uint32_t y, |
---|
980 | uint64_t sum) |
---|
981 | { |
---|
982 | /* return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + ((q15_t) x * (q15_t) (y >> 16)); */ |
---|
983 | return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) + |
---|
984 | ((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) + |
---|
985 | ( ((q63_t)sum ) ) )); |
---|
986 | } |
---|
987 | |
---|
988 | |
---|
989 | /* |
---|
990 | * @brief C custom defined SMUAD for M3 and M0 processors |
---|
991 | */ |
---|
992 | static __INLINE uint32_t __SMUAD( |
---|
993 | uint32_t x, |
---|
994 | uint32_t y) |
---|
995 | { |
---|
996 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) + |
---|
997 | ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) )); |
---|
998 | } |
---|
999 | |
---|
1000 | |
---|
1001 | /* |
---|
1002 | * @brief C custom defined SMUSD for M3 and M0 processors |
---|
1003 | */ |
---|
1004 | static __INLINE uint32_t __SMUSD( |
---|
1005 | uint32_t x, |
---|
1006 | uint32_t y) |
---|
1007 | { |
---|
1008 | return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) - |
---|
1009 | ((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) )); |
---|
1010 | } |
---|
1011 | |
---|
1012 | |
---|
1013 | /* |
---|
1014 | * @brief C custom defined SXTB16 for M3 and M0 processors |
---|
1015 | */ |
---|
1016 | static __INLINE uint32_t __SXTB16( |
---|
1017 | uint32_t x) |
---|
1018 | { |
---|
1019 | return ((uint32_t)(((((q31_t)x << 24) >> 24) & (q31_t)0x0000FFFF) | |
---|
1020 | ((((q31_t)x << 8) >> 8) & (q31_t)0xFFFF0000) )); |
---|
1021 | } |
---|
1022 | |
---|
1023 | #endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */ |
---|
1024 | |
---|
1025 | |
---|
1026 | /** |
---|
1027 | * @brief Instance structure for the Q7 FIR filter. |
---|
1028 | */ |
---|
1029 | typedef struct |
---|
1030 | { |
---|
1031 | uint16_t numTaps; /**< number of filter coefficients in the filter. */ |
---|
1032 | q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
---|
1033 | q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
---|
1034 | } arm_fir_instance_q7; |
---|
1035 | |
---|
1036 | /** |
---|
1037 | * @brief Instance structure for the Q15 FIR filter. |
---|
1038 | */ |
---|
1039 | typedef struct |
---|
1040 | { |
---|
1041 | uint16_t numTaps; /**< number of filter coefficients in the filter. */ |
---|
1042 | q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
---|
1043 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
---|
1044 | } arm_fir_instance_q15; |
---|
1045 | |
---|
1046 | /** |
---|
1047 | * @brief Instance structure for the Q31 FIR filter. |
---|
1048 | */ |
---|
1049 | typedef struct |
---|
1050 | { |
---|
1051 | uint16_t numTaps; /**< number of filter coefficients in the filter. */ |
---|
1052 | q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
---|
1053 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
---|
1054 | } arm_fir_instance_q31; |
---|
1055 | |
---|
1056 | /** |
---|
1057 | * @brief Instance structure for the floating-point FIR filter. |
---|
1058 | */ |
---|
1059 | typedef struct |
---|
1060 | { |
---|
1061 | uint16_t numTaps; /**< number of filter coefficients in the filter. */ |
---|
1062 | float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
---|
1063 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
---|
1064 | } arm_fir_instance_f32; |
---|
1065 | |
---|
1066 | |
---|
1067 | /** |
---|
1068 | * @brief Processing function for the Q7 FIR filter. |
---|
1069 | * @param[in] S points to an instance of the Q7 FIR filter structure. |
---|
1070 | * @param[in] pSrc points to the block of input data. |
---|
1071 | * @param[out] pDst points to the block of output data. |
---|
1072 | * @param[in] blockSize number of samples to process. |
---|
1073 | */ |
---|
1074 | void arm_fir_q7( |
---|
1075 | const arm_fir_instance_q7 * S, |
---|
1076 | q7_t * pSrc, |
---|
1077 | q7_t * pDst, |
---|
1078 | uint32_t blockSize); |
---|
1079 | |
---|
1080 | |
---|
1081 | /** |
---|
1082 | * @brief Initialization function for the Q7 FIR filter. |
---|
1083 | * @param[in,out] S points to an instance of the Q7 FIR structure. |
---|
1084 | * @param[in] numTaps Number of filter coefficients in the filter. |
---|
1085 | * @param[in] pCoeffs points to the filter coefficients. |
---|
1086 | * @param[in] pState points to the state buffer. |
---|
1087 | * @param[in] blockSize number of samples that are processed. |
---|
1088 | */ |
---|
1089 | void arm_fir_init_q7( |
---|
1090 | arm_fir_instance_q7 * S, |
---|
1091 | uint16_t numTaps, |
---|
1092 | q7_t * pCoeffs, |
---|
1093 | q7_t * pState, |
---|
1094 | uint32_t blockSize); |
---|
1095 | |
---|
1096 | |
---|
1097 | /** |
---|
1098 | * @brief Processing function for the Q15 FIR filter. |
---|
1099 | * @param[in] S points to an instance of the Q15 FIR structure. |
---|
1100 | * @param[in] pSrc points to the block of input data. |
---|
1101 | * @param[out] pDst points to the block of output data. |
---|
1102 | * @param[in] blockSize number of samples to process. |
---|
1103 | */ |
---|
1104 | void arm_fir_q15( |
---|
1105 | const arm_fir_instance_q15 * S, |
---|
1106 | q15_t * pSrc, |
---|
1107 | q15_t * pDst, |
---|
1108 | uint32_t blockSize); |
---|
1109 | |
---|
1110 | |
---|
1111 | /** |
---|
1112 | * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4. |
---|
1113 | * @param[in] S points to an instance of the Q15 FIR filter structure. |
---|
1114 | * @param[in] pSrc points to the block of input data. |
---|
1115 | * @param[out] pDst points to the block of output data. |
---|
1116 | * @param[in] blockSize number of samples to process. |
---|
1117 | */ |
---|
1118 | void arm_fir_fast_q15( |
---|
1119 | const arm_fir_instance_q15 * S, |
---|
1120 | q15_t * pSrc, |
---|
1121 | q15_t * pDst, |
---|
1122 | uint32_t blockSize); |
---|
1123 | |
---|
1124 | |
---|
1125 | /** |
---|
1126 | * @brief Initialization function for the Q15 FIR filter. |
---|
1127 | * @param[in,out] S points to an instance of the Q15 FIR filter structure. |
---|
1128 | * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4. |
---|
1129 | * @param[in] pCoeffs points to the filter coefficients. |
---|
1130 | * @param[in] pState points to the state buffer. |
---|
1131 | * @param[in] blockSize number of samples that are processed at a time. |
---|
1132 | * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if |
---|
1133 | * <code>numTaps</code> is not a supported value. |
---|
1134 | */ |
---|
1135 | arm_status arm_fir_init_q15( |
---|
1136 | arm_fir_instance_q15 * S, |
---|
1137 | uint16_t numTaps, |
---|
1138 | q15_t * pCoeffs, |
---|
1139 | q15_t * pState, |
---|
1140 | uint32_t blockSize); |
---|
1141 | |
---|
1142 | |
---|
1143 | /** |
---|
1144 | * @brief Processing function for the Q31 FIR filter. |
---|
1145 | * @param[in] S points to an instance of the Q31 FIR filter structure. |
---|
1146 | * @param[in] pSrc points to the block of input data. |
---|
1147 | * @param[out] pDst points to the block of output data. |
---|
1148 | * @param[in] blockSize number of samples to process. |
---|
1149 | */ |
---|
1150 | void arm_fir_q31( |
---|
1151 | const arm_fir_instance_q31 * S, |
---|
1152 | q31_t * pSrc, |
---|
1153 | q31_t * pDst, |
---|
1154 | uint32_t blockSize); |
---|
1155 | |
---|
1156 | |
---|
1157 | /** |
---|
1158 | * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4. |
---|
1159 | * @param[in] S points to an instance of the Q31 FIR structure. |
---|
1160 | * @param[in] pSrc points to the block of input data. |
---|
1161 | * @param[out] pDst points to the block of output data. |
---|
1162 | * @param[in] blockSize number of samples to process. |
---|
1163 | */ |
---|
1164 | void arm_fir_fast_q31( |
---|
1165 | const arm_fir_instance_q31 * S, |
---|
1166 | q31_t * pSrc, |
---|
1167 | q31_t * pDst, |
---|
1168 | uint32_t blockSize); |
---|
1169 | |
---|
1170 | |
---|
1171 | /** |
---|
1172 | * @brief Initialization function for the Q31 FIR filter. |
---|
1173 | * @param[in,out] S points to an instance of the Q31 FIR structure. |
---|
1174 | * @param[in] numTaps Number of filter coefficients in the filter. |
---|
1175 | * @param[in] pCoeffs points to the filter coefficients. |
---|
1176 | * @param[in] pState points to the state buffer. |
---|
1177 | * @param[in] blockSize number of samples that are processed at a time. |
---|
1178 | */ |
---|
1179 | void arm_fir_init_q31( |
---|
1180 | arm_fir_instance_q31 * S, |
---|
1181 | uint16_t numTaps, |
---|
1182 | q31_t * pCoeffs, |
---|
1183 | q31_t * pState, |
---|
1184 | uint32_t blockSize); |
---|
1185 | |
---|
1186 | |
---|
1187 | /** |
---|
1188 | * @brief Processing function for the floating-point FIR filter. |
---|
1189 | * @param[in] S points to an instance of the floating-point FIR structure. |
---|
1190 | * @param[in] pSrc points to the block of input data. |
---|
1191 | * @param[out] pDst points to the block of output data. |
---|
1192 | * @param[in] blockSize number of samples to process. |
---|
1193 | */ |
---|
1194 | void arm_fir_f32( |
---|
1195 | const arm_fir_instance_f32 * S, |
---|
1196 | float32_t * pSrc, |
---|
1197 | float32_t * pDst, |
---|
1198 | uint32_t blockSize); |
---|
1199 | |
---|
1200 | |
---|
1201 | /** |
---|
1202 | * @brief Initialization function for the floating-point FIR filter. |
---|
1203 | * @param[in,out] S points to an instance of the floating-point FIR filter structure. |
---|
1204 | * @param[in] numTaps Number of filter coefficients in the filter. |
---|
1205 | * @param[in] pCoeffs points to the filter coefficients. |
---|
1206 | * @param[in] pState points to the state buffer. |
---|
1207 | * @param[in] blockSize number of samples that are processed at a time. |
---|
1208 | */ |
---|
1209 | void arm_fir_init_f32( |
---|
1210 | arm_fir_instance_f32 * S, |
---|
1211 | uint16_t numTaps, |
---|
1212 | float32_t * pCoeffs, |
---|
1213 | float32_t * pState, |
---|
1214 | uint32_t blockSize); |
---|
1215 | |
---|
1216 | |
---|
1217 | /** |
---|
1218 | * @brief Instance structure for the Q15 Biquad cascade filter. |
---|
1219 | */ |
---|
1220 | typedef struct |
---|
1221 | { |
---|
1222 | int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
---|
1223 | q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ |
---|
1224 | q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ |
---|
1225 | int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ |
---|
1226 | } arm_biquad_casd_df1_inst_q15; |
---|
1227 | |
---|
1228 | /** |
---|
1229 | * @brief Instance structure for the Q31 Biquad cascade filter. |
---|
1230 | */ |
---|
1231 | typedef struct |
---|
1232 | { |
---|
1233 | uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
---|
1234 | q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ |
---|
1235 | q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ |
---|
1236 | uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */ |
---|
1237 | } arm_biquad_casd_df1_inst_q31; |
---|
1238 | |
---|
1239 | /** |
---|
1240 | * @brief Instance structure for the floating-point Biquad cascade filter. |
---|
1241 | */ |
---|
1242 | typedef struct |
---|
1243 | { |
---|
1244 | uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
---|
1245 | float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */ |
---|
1246 | float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */ |
---|
1247 | } arm_biquad_casd_df1_inst_f32; |
---|
1248 | |
---|
1249 | |
---|
1250 | /** |
---|
1251 | * @brief Processing function for the Q15 Biquad cascade filter. |
---|
1252 | * @param[in] S points to an instance of the Q15 Biquad cascade structure. |
---|
1253 | * @param[in] pSrc points to the block of input data. |
---|
1254 | * @param[out] pDst points to the block of output data. |
---|
1255 | * @param[in] blockSize number of samples to process. |
---|
1256 | */ |
---|
1257 | void arm_biquad_cascade_df1_q15( |
---|
1258 | const arm_biquad_casd_df1_inst_q15 * S, |
---|
1259 | q15_t * pSrc, |
---|
1260 | q15_t * pDst, |
---|
1261 | uint32_t blockSize); |
---|
1262 | |
---|
1263 | |
---|
1264 | /** |
---|
1265 | * @brief Initialization function for the Q15 Biquad cascade filter. |
---|
1266 | * @param[in,out] S points to an instance of the Q15 Biquad cascade structure. |
---|
1267 | * @param[in] numStages number of 2nd order stages in the filter. |
---|
1268 | * @param[in] pCoeffs points to the filter coefficients. |
---|
1269 | * @param[in] pState points to the state buffer. |
---|
1270 | * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format |
---|
1271 | */ |
---|
1272 | void arm_biquad_cascade_df1_init_q15( |
---|
1273 | arm_biquad_casd_df1_inst_q15 * S, |
---|
1274 | uint8_t numStages, |
---|
1275 | q15_t * pCoeffs, |
---|
1276 | q15_t * pState, |
---|
1277 | int8_t postShift); |
---|
1278 | |
---|
1279 | |
---|
1280 | /** |
---|
1281 | * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4. |
---|
1282 | * @param[in] S points to an instance of the Q15 Biquad cascade structure. |
---|
1283 | * @param[in] pSrc points to the block of input data. |
---|
1284 | * @param[out] pDst points to the block of output data. |
---|
1285 | * @param[in] blockSize number of samples to process. |
---|
1286 | */ |
---|
1287 | void arm_biquad_cascade_df1_fast_q15( |
---|
1288 | const arm_biquad_casd_df1_inst_q15 * S, |
---|
1289 | q15_t * pSrc, |
---|
1290 | q15_t * pDst, |
---|
1291 | uint32_t blockSize); |
---|
1292 | |
---|
1293 | |
---|
1294 | /** |
---|
1295 | * @brief Processing function for the Q31 Biquad cascade filter |
---|
1296 | * @param[in] S points to an instance of the Q31 Biquad cascade structure. |
---|
1297 | * @param[in] pSrc points to the block of input data. |
---|
1298 | * @param[out] pDst points to the block of output data. |
---|
1299 | * @param[in] blockSize number of samples to process. |
---|
1300 | */ |
---|
1301 | void arm_biquad_cascade_df1_q31( |
---|
1302 | const arm_biquad_casd_df1_inst_q31 * S, |
---|
1303 | q31_t * pSrc, |
---|
1304 | q31_t * pDst, |
---|
1305 | uint32_t blockSize); |
---|
1306 | |
---|
1307 | |
---|
1308 | /** |
---|
1309 | * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4. |
---|
1310 | * @param[in] S points to an instance of the Q31 Biquad cascade structure. |
---|
1311 | * @param[in] pSrc points to the block of input data. |
---|
1312 | * @param[out] pDst points to the block of output data. |
---|
1313 | * @param[in] blockSize number of samples to process. |
---|
1314 | */ |
---|
1315 | void arm_biquad_cascade_df1_fast_q31( |
---|
1316 | const arm_biquad_casd_df1_inst_q31 * S, |
---|
1317 | q31_t * pSrc, |
---|
1318 | q31_t * pDst, |
---|
1319 | uint32_t blockSize); |
---|
1320 | |
---|
1321 | |
---|
1322 | /** |
---|
1323 | * @brief Initialization function for the Q31 Biquad cascade filter. |
---|
1324 | * @param[in,out] S points to an instance of the Q31 Biquad cascade structure. |
---|
1325 | * @param[in] numStages number of 2nd order stages in the filter. |
---|
1326 | * @param[in] pCoeffs points to the filter coefficients. |
---|
1327 | * @param[in] pState points to the state buffer. |
---|
1328 | * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format |
---|
1329 | */ |
---|
1330 | void arm_biquad_cascade_df1_init_q31( |
---|
1331 | arm_biquad_casd_df1_inst_q31 * S, |
---|
1332 | uint8_t numStages, |
---|
1333 | q31_t * pCoeffs, |
---|
1334 | q31_t * pState, |
---|
1335 | int8_t postShift); |
---|
1336 | |
---|
1337 | |
---|
1338 | /** |
---|
1339 | * @brief Processing function for the floating-point Biquad cascade filter. |
---|
1340 | * @param[in] S points to an instance of the floating-point Biquad cascade structure. |
---|
1341 | * @param[in] pSrc points to the block of input data. |
---|
1342 | * @param[out] pDst points to the block of output data. |
---|
1343 | * @param[in] blockSize number of samples to process. |
---|
1344 | */ |
---|
1345 | void arm_biquad_cascade_df1_f32( |
---|
1346 | const arm_biquad_casd_df1_inst_f32 * S, |
---|
1347 | float32_t * pSrc, |
---|
1348 | float32_t * pDst, |
---|
1349 | uint32_t blockSize); |
---|
1350 | |
---|
1351 | |
---|
1352 | /** |
---|
1353 | * @brief Initialization function for the floating-point Biquad cascade filter. |
---|
1354 | * @param[in,out] S points to an instance of the floating-point Biquad cascade structure. |
---|
1355 | * @param[in] numStages number of 2nd order stages in the filter. |
---|
1356 | * @param[in] pCoeffs points to the filter coefficients. |
---|
1357 | * @param[in] pState points to the state buffer. |
---|
1358 | */ |
---|
1359 | void arm_biquad_cascade_df1_init_f32( |
---|
1360 | arm_biquad_casd_df1_inst_f32 * S, |
---|
1361 | uint8_t numStages, |
---|
1362 | float32_t * pCoeffs, |
---|
1363 | float32_t * pState); |
---|
1364 | |
---|
1365 | |
---|
1366 | /** |
---|
1367 | * @brief Instance structure for the floating-point matrix structure. |
---|
1368 | */ |
---|
1369 | typedef struct |
---|
1370 | { |
---|
1371 | uint16_t numRows; /**< number of rows of the matrix. */ |
---|
1372 | uint16_t numCols; /**< number of columns of the matrix. */ |
---|
1373 | float32_t *pData; /**< points to the data of the matrix. */ |
---|
1374 | } arm_matrix_instance_f32; |
---|
1375 | |
---|
1376 | |
---|
1377 | /** |
---|
1378 | * @brief Instance structure for the floating-point matrix structure. |
---|
1379 | */ |
---|
1380 | typedef struct |
---|
1381 | { |
---|
1382 | uint16_t numRows; /**< number of rows of the matrix. */ |
---|
1383 | uint16_t numCols; /**< number of columns of the matrix. */ |
---|
1384 | float64_t *pData; /**< points to the data of the matrix. */ |
---|
1385 | } arm_matrix_instance_f64; |
---|
1386 | |
---|
1387 | /** |
---|
1388 | * @brief Instance structure for the Q15 matrix structure. |
---|
1389 | */ |
---|
1390 | typedef struct |
---|
1391 | { |
---|
1392 | uint16_t numRows; /**< number of rows of the matrix. */ |
---|
1393 | uint16_t numCols; /**< number of columns of the matrix. */ |
---|
1394 | q15_t *pData; /**< points to the data of the matrix. */ |
---|
1395 | } arm_matrix_instance_q15; |
---|
1396 | |
---|
1397 | /** |
---|
1398 | * @brief Instance structure for the Q31 matrix structure. |
---|
1399 | */ |
---|
1400 | typedef struct |
---|
1401 | { |
---|
1402 | uint16_t numRows; /**< number of rows of the matrix. */ |
---|
1403 | uint16_t numCols; /**< number of columns of the matrix. */ |
---|
1404 | q31_t *pData; /**< points to the data of the matrix. */ |
---|
1405 | } arm_matrix_instance_q31; |
---|
1406 | |
---|
1407 | |
---|
1408 | /** |
---|
1409 | * @brief Floating-point matrix addition. |
---|
1410 | * @param[in] pSrcA points to the first input matrix structure |
---|
1411 | * @param[in] pSrcB points to the second input matrix structure |
---|
1412 | * @param[out] pDst points to output matrix structure |
---|
1413 | * @return The function returns either |
---|
1414 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
---|
1415 | */ |
---|
1416 | arm_status arm_mat_add_f32( |
---|
1417 | const arm_matrix_instance_f32 * pSrcA, |
---|
1418 | const arm_matrix_instance_f32 * pSrcB, |
---|
1419 | arm_matrix_instance_f32 * pDst); |
---|
1420 | |
---|
1421 | |
---|
1422 | /** |
---|
1423 | * @brief Q15 matrix addition. |
---|
1424 | * @param[in] pSrcA points to the first input matrix structure |
---|
1425 | * @param[in] pSrcB points to the second input matrix structure |
---|
1426 | * @param[out] pDst points to output matrix structure |
---|
1427 | * @return The function returns either |
---|
1428 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
---|
1429 | */ |
---|
1430 | arm_status arm_mat_add_q15( |
---|
1431 | const arm_matrix_instance_q15 * pSrcA, |
---|
1432 | const arm_matrix_instance_q15 * pSrcB, |
---|
1433 | arm_matrix_instance_q15 * pDst); |
---|
1434 | |
---|
1435 | |
---|
1436 | /** |
---|
1437 | * @brief Q31 matrix addition. |
---|
1438 | * @param[in] pSrcA points to the first input matrix structure |
---|
1439 | * @param[in] pSrcB points to the second input matrix structure |
---|
1440 | * @param[out] pDst points to output matrix structure |
---|
1441 | * @return The function returns either |
---|
1442 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
---|
1443 | */ |
---|
1444 | arm_status arm_mat_add_q31( |
---|
1445 | const arm_matrix_instance_q31 * pSrcA, |
---|
1446 | const arm_matrix_instance_q31 * pSrcB, |
---|
1447 | arm_matrix_instance_q31 * pDst); |
---|
1448 | |
---|
1449 | |
---|
1450 | /** |
---|
1451 | * @brief Floating-point, complex, matrix multiplication. |
---|
1452 | * @param[in] pSrcA points to the first input matrix structure |
---|
1453 | * @param[in] pSrcB points to the second input matrix structure |
---|
1454 | * @param[out] pDst points to output matrix structure |
---|
1455 | * @return The function returns either |
---|
1456 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
---|
1457 | */ |
---|
1458 | arm_status arm_mat_cmplx_mult_f32( |
---|
1459 | const arm_matrix_instance_f32 * pSrcA, |
---|
1460 | const arm_matrix_instance_f32 * pSrcB, |
---|
1461 | arm_matrix_instance_f32 * pDst); |
---|
1462 | |
---|
1463 | |
---|
1464 | /** |
---|
1465 | * @brief Q15, complex, matrix multiplication. |
---|
1466 | * @param[in] pSrcA points to the first input matrix structure |
---|
1467 | * @param[in] pSrcB points to the second input matrix structure |
---|
1468 | * @param[out] pDst points to output matrix structure |
---|
1469 | * @return The function returns either |
---|
1470 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
---|
1471 | */ |
---|
1472 | arm_status arm_mat_cmplx_mult_q15( |
---|
1473 | const arm_matrix_instance_q15 * pSrcA, |
---|
1474 | const arm_matrix_instance_q15 * pSrcB, |
---|
1475 | arm_matrix_instance_q15 * pDst, |
---|
1476 | q15_t * pScratch); |
---|
1477 | |
---|
1478 | |
---|
1479 | /** |
---|
1480 | * @brief Q31, complex, matrix multiplication. |
---|
1481 | * @param[in] pSrcA points to the first input matrix structure |
---|
1482 | * @param[in] pSrcB points to the second input matrix structure |
---|
1483 | * @param[out] pDst points to output matrix structure |
---|
1484 | * @return The function returns either |
---|
1485 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
---|
1486 | */ |
---|
1487 | arm_status arm_mat_cmplx_mult_q31( |
---|
1488 | const arm_matrix_instance_q31 * pSrcA, |
---|
1489 | const arm_matrix_instance_q31 * pSrcB, |
---|
1490 | arm_matrix_instance_q31 * pDst); |
---|
1491 | |
---|
1492 | |
---|
1493 | /** |
---|
1494 | * @brief Floating-point matrix transpose. |
---|
1495 | * @param[in] pSrc points to the input matrix |
---|
1496 | * @param[out] pDst points to the output matrix |
---|
1497 | * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> |
---|
1498 | * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
---|
1499 | */ |
---|
1500 | arm_status arm_mat_trans_f32( |
---|
1501 | const arm_matrix_instance_f32 * pSrc, |
---|
1502 | arm_matrix_instance_f32 * pDst); |
---|
1503 | |
---|
1504 | |
---|
1505 | /** |
---|
1506 | * @brief Q15 matrix transpose. |
---|
1507 | * @param[in] pSrc points to the input matrix |
---|
1508 | * @param[out] pDst points to the output matrix |
---|
1509 | * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> |
---|
1510 | * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
---|
1511 | */ |
---|
1512 | arm_status arm_mat_trans_q15( |
---|
1513 | const arm_matrix_instance_q15 * pSrc, |
---|
1514 | arm_matrix_instance_q15 * pDst); |
---|
1515 | |
---|
1516 | |
---|
1517 | /** |
---|
1518 | * @brief Q31 matrix transpose. |
---|
1519 | * @param[in] pSrc points to the input matrix |
---|
1520 | * @param[out] pDst points to the output matrix |
---|
1521 | * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code> |
---|
1522 | * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
---|
1523 | */ |
---|
1524 | arm_status arm_mat_trans_q31( |
---|
1525 | const arm_matrix_instance_q31 * pSrc, |
---|
1526 | arm_matrix_instance_q31 * pDst); |
---|
1527 | |
---|
1528 | |
---|
1529 | /** |
---|
1530 | * @brief Floating-point matrix multiplication |
---|
1531 | * @param[in] pSrcA points to the first input matrix structure |
---|
1532 | * @param[in] pSrcB points to the second input matrix structure |
---|
1533 | * @param[out] pDst points to output matrix structure |
---|
1534 | * @return The function returns either |
---|
1535 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
---|
1536 | */ |
---|
1537 | arm_status arm_mat_mult_f32( |
---|
1538 | const arm_matrix_instance_f32 * pSrcA, |
---|
1539 | const arm_matrix_instance_f32 * pSrcB, |
---|
1540 | arm_matrix_instance_f32 * pDst); |
---|
1541 | |
---|
1542 | |
---|
1543 | /** |
---|
1544 | * @brief Q15 matrix multiplication |
---|
1545 | * @param[in] pSrcA points to the first input matrix structure |
---|
1546 | * @param[in] pSrcB points to the second input matrix structure |
---|
1547 | * @param[out] pDst points to output matrix structure |
---|
1548 | * @param[in] pState points to the array for storing intermediate results |
---|
1549 | * @return The function returns either |
---|
1550 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
---|
1551 | */ |
---|
1552 | arm_status arm_mat_mult_q15( |
---|
1553 | const arm_matrix_instance_q15 * pSrcA, |
---|
1554 | const arm_matrix_instance_q15 * pSrcB, |
---|
1555 | arm_matrix_instance_q15 * pDst, |
---|
1556 | q15_t * pState); |
---|
1557 | |
---|
1558 | |
---|
1559 | /** |
---|
1560 | * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 |
---|
1561 | * @param[in] pSrcA points to the first input matrix structure |
---|
1562 | * @param[in] pSrcB points to the second input matrix structure |
---|
1563 | * @param[out] pDst points to output matrix structure |
---|
1564 | * @param[in] pState points to the array for storing intermediate results |
---|
1565 | * @return The function returns either |
---|
1566 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
---|
1567 | */ |
---|
1568 | arm_status arm_mat_mult_fast_q15( |
---|
1569 | const arm_matrix_instance_q15 * pSrcA, |
---|
1570 | const arm_matrix_instance_q15 * pSrcB, |
---|
1571 | arm_matrix_instance_q15 * pDst, |
---|
1572 | q15_t * pState); |
---|
1573 | |
---|
1574 | |
---|
1575 | /** |
---|
1576 | * @brief Q31 matrix multiplication |
---|
1577 | * @param[in] pSrcA points to the first input matrix structure |
---|
1578 | * @param[in] pSrcB points to the second input matrix structure |
---|
1579 | * @param[out] pDst points to output matrix structure |
---|
1580 | * @return The function returns either |
---|
1581 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
---|
1582 | */ |
---|
1583 | arm_status arm_mat_mult_q31( |
---|
1584 | const arm_matrix_instance_q31 * pSrcA, |
---|
1585 | const arm_matrix_instance_q31 * pSrcB, |
---|
1586 | arm_matrix_instance_q31 * pDst); |
---|
1587 | |
---|
1588 | |
---|
1589 | /** |
---|
1590 | * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 |
---|
1591 | * @param[in] pSrcA points to the first input matrix structure |
---|
1592 | * @param[in] pSrcB points to the second input matrix structure |
---|
1593 | * @param[out] pDst points to output matrix structure |
---|
1594 | * @return The function returns either |
---|
1595 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
---|
1596 | */ |
---|
1597 | arm_status arm_mat_mult_fast_q31( |
---|
1598 | const arm_matrix_instance_q31 * pSrcA, |
---|
1599 | const arm_matrix_instance_q31 * pSrcB, |
---|
1600 | arm_matrix_instance_q31 * pDst); |
---|
1601 | |
---|
1602 | |
---|
1603 | /** |
---|
1604 | * @brief Floating-point matrix subtraction |
---|
1605 | * @param[in] pSrcA points to the first input matrix structure |
---|
1606 | * @param[in] pSrcB points to the second input matrix structure |
---|
1607 | * @param[out] pDst points to output matrix structure |
---|
1608 | * @return The function returns either |
---|
1609 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
---|
1610 | */ |
---|
1611 | arm_status arm_mat_sub_f32( |
---|
1612 | const arm_matrix_instance_f32 * pSrcA, |
---|
1613 | const arm_matrix_instance_f32 * pSrcB, |
---|
1614 | arm_matrix_instance_f32 * pDst); |
---|
1615 | |
---|
1616 | |
---|
1617 | /** |
---|
1618 | * @brief Q15 matrix subtraction |
---|
1619 | * @param[in] pSrcA points to the first input matrix structure |
---|
1620 | * @param[in] pSrcB points to the second input matrix structure |
---|
1621 | * @param[out] pDst points to output matrix structure |
---|
1622 | * @return The function returns either |
---|
1623 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
---|
1624 | */ |
---|
1625 | arm_status arm_mat_sub_q15( |
---|
1626 | const arm_matrix_instance_q15 * pSrcA, |
---|
1627 | const arm_matrix_instance_q15 * pSrcB, |
---|
1628 | arm_matrix_instance_q15 * pDst); |
---|
1629 | |
---|
1630 | |
---|
1631 | /** |
---|
1632 | * @brief Q31 matrix subtraction |
---|
1633 | * @param[in] pSrcA points to the first input matrix structure |
---|
1634 | * @param[in] pSrcB points to the second input matrix structure |
---|
1635 | * @param[out] pDst points to output matrix structure |
---|
1636 | * @return The function returns either |
---|
1637 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
---|
1638 | */ |
---|
1639 | arm_status arm_mat_sub_q31( |
---|
1640 | const arm_matrix_instance_q31 * pSrcA, |
---|
1641 | const arm_matrix_instance_q31 * pSrcB, |
---|
1642 | arm_matrix_instance_q31 * pDst); |
---|
1643 | |
---|
1644 | |
---|
1645 | /** |
---|
1646 | * @brief Floating-point matrix scaling. |
---|
1647 | * @param[in] pSrc points to the input matrix |
---|
1648 | * @param[in] scale scale factor |
---|
1649 | * @param[out] pDst points to the output matrix |
---|
1650 | * @return The function returns either |
---|
1651 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
---|
1652 | */ |
---|
1653 | arm_status arm_mat_scale_f32( |
---|
1654 | const arm_matrix_instance_f32 * pSrc, |
---|
1655 | float32_t scale, |
---|
1656 | arm_matrix_instance_f32 * pDst); |
---|
1657 | |
---|
1658 | |
---|
1659 | /** |
---|
1660 | * @brief Q15 matrix scaling. |
---|
1661 | * @param[in] pSrc points to input matrix |
---|
1662 | * @param[in] scaleFract fractional portion of the scale factor |
---|
1663 | * @param[in] shift number of bits to shift the result by |
---|
1664 | * @param[out] pDst points to output matrix |
---|
1665 | * @return The function returns either |
---|
1666 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
---|
1667 | */ |
---|
1668 | arm_status arm_mat_scale_q15( |
---|
1669 | const arm_matrix_instance_q15 * pSrc, |
---|
1670 | q15_t scaleFract, |
---|
1671 | int32_t shift, |
---|
1672 | arm_matrix_instance_q15 * pDst); |
---|
1673 | |
---|
1674 | |
---|
1675 | /** |
---|
1676 | * @brief Q31 matrix scaling. |
---|
1677 | * @param[in] pSrc points to input matrix |
---|
1678 | * @param[in] scaleFract fractional portion of the scale factor |
---|
1679 | * @param[in] shift number of bits to shift the result by |
---|
1680 | * @param[out] pDst points to output matrix structure |
---|
1681 | * @return The function returns either |
---|
1682 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
---|
1683 | */ |
---|
1684 | arm_status arm_mat_scale_q31( |
---|
1685 | const arm_matrix_instance_q31 * pSrc, |
---|
1686 | q31_t scaleFract, |
---|
1687 | int32_t shift, |
---|
1688 | arm_matrix_instance_q31 * pDst); |
---|
1689 | |
---|
1690 | |
---|
1691 | /** |
---|
1692 | * @brief Q31 matrix initialization. |
---|
1693 | * @param[in,out] S points to an instance of the floating-point matrix structure. |
---|
1694 | * @param[in] nRows number of rows in the matrix. |
---|
1695 | * @param[in] nColumns number of columns in the matrix. |
---|
1696 | * @param[in] pData points to the matrix data array. |
---|
1697 | */ |
---|
1698 | void arm_mat_init_q31( |
---|
1699 | arm_matrix_instance_q31 * S, |
---|
1700 | uint16_t nRows, |
---|
1701 | uint16_t nColumns, |
---|
1702 | q31_t * pData); |
---|
1703 | |
---|
1704 | |
---|
1705 | /** |
---|
1706 | * @brief Q15 matrix initialization. |
---|
1707 | * @param[in,out] S points to an instance of the floating-point matrix structure. |
---|
1708 | * @param[in] nRows number of rows in the matrix. |
---|
1709 | * @param[in] nColumns number of columns in the matrix. |
---|
1710 | * @param[in] pData points to the matrix data array. |
---|
1711 | */ |
---|
1712 | void arm_mat_init_q15( |
---|
1713 | arm_matrix_instance_q15 * S, |
---|
1714 | uint16_t nRows, |
---|
1715 | uint16_t nColumns, |
---|
1716 | q15_t * pData); |
---|
1717 | |
---|
1718 | |
---|
1719 | /** |
---|
1720 | * @brief Floating-point matrix initialization. |
---|
1721 | * @param[in,out] S points to an instance of the floating-point matrix structure. |
---|
1722 | * @param[in] nRows number of rows in the matrix. |
---|
1723 | * @param[in] nColumns number of columns in the matrix. |
---|
1724 | * @param[in] pData points to the matrix data array. |
---|
1725 | */ |
---|
1726 | void arm_mat_init_f32( |
---|
1727 | arm_matrix_instance_f32 * S, |
---|
1728 | uint16_t nRows, |
---|
1729 | uint16_t nColumns, |
---|
1730 | float32_t * pData); |
---|
1731 | |
---|
1732 | |
---|
1733 | |
---|
1734 | /** |
---|
1735 | * @brief Instance structure for the Q15 PID Control. |
---|
1736 | */ |
---|
1737 | typedef struct |
---|
1738 | { |
---|
1739 | q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ |
---|
1740 | #ifdef ARM_MATH_CM0_FAMILY |
---|
1741 | q15_t A1; |
---|
1742 | q15_t A2; |
---|
1743 | #else |
---|
1744 | q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/ |
---|
1745 | #endif |
---|
1746 | q15_t state[3]; /**< The state array of length 3. */ |
---|
1747 | q15_t Kp; /**< The proportional gain. */ |
---|
1748 | q15_t Ki; /**< The integral gain. */ |
---|
1749 | q15_t Kd; /**< The derivative gain. */ |
---|
1750 | } arm_pid_instance_q15; |
---|
1751 | |
---|
1752 | /** |
---|
1753 | * @brief Instance structure for the Q31 PID Control. |
---|
1754 | */ |
---|
1755 | typedef struct |
---|
1756 | { |
---|
1757 | q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ |
---|
1758 | q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ |
---|
1759 | q31_t A2; /**< The derived gain, A2 = Kd . */ |
---|
1760 | q31_t state[3]; /**< The state array of length 3. */ |
---|
1761 | q31_t Kp; /**< The proportional gain. */ |
---|
1762 | q31_t Ki; /**< The integral gain. */ |
---|
1763 | q31_t Kd; /**< The derivative gain. */ |
---|
1764 | } arm_pid_instance_q31; |
---|
1765 | |
---|
1766 | /** |
---|
1767 | * @brief Instance structure for the floating-point PID Control. |
---|
1768 | */ |
---|
1769 | typedef struct |
---|
1770 | { |
---|
1771 | float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */ |
---|
1772 | float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */ |
---|
1773 | float32_t A2; /**< The derived gain, A2 = Kd . */ |
---|
1774 | float32_t state[3]; /**< The state array of length 3. */ |
---|
1775 | float32_t Kp; /**< The proportional gain. */ |
---|
1776 | float32_t Ki; /**< The integral gain. */ |
---|
1777 | float32_t Kd; /**< The derivative gain. */ |
---|
1778 | } arm_pid_instance_f32; |
---|
1779 | |
---|
1780 | |
---|
1781 | |
---|
1782 | /** |
---|
1783 | * @brief Initialization function for the floating-point PID Control. |
---|
1784 | * @param[in,out] S points to an instance of the PID structure. |
---|
1785 | * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. |
---|
1786 | */ |
---|
1787 | void arm_pid_init_f32( |
---|
1788 | arm_pid_instance_f32 * S, |
---|
1789 | int32_t resetStateFlag); |
---|
1790 | |
---|
1791 | |
---|
1792 | /** |
---|
1793 | * @brief Reset function for the floating-point PID Control. |
---|
1794 | * @param[in,out] S is an instance of the floating-point PID Control structure |
---|
1795 | */ |
---|
1796 | void arm_pid_reset_f32( |
---|
1797 | arm_pid_instance_f32 * S); |
---|
1798 | |
---|
1799 | |
---|
1800 | /** |
---|
1801 | * @brief Initialization function for the Q31 PID Control. |
---|
1802 | * @param[in,out] S points to an instance of the Q15 PID structure. |
---|
1803 | * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. |
---|
1804 | */ |
---|
1805 | void arm_pid_init_q31( |
---|
1806 | arm_pid_instance_q31 * S, |
---|
1807 | int32_t resetStateFlag); |
---|
1808 | |
---|
1809 | |
---|
1810 | /** |
---|
1811 | * @brief Reset function for the Q31 PID Control. |
---|
1812 | * @param[in,out] S points to an instance of the Q31 PID Control structure |
---|
1813 | */ |
---|
1814 | |
---|
1815 | void arm_pid_reset_q31( |
---|
1816 | arm_pid_instance_q31 * S); |
---|
1817 | |
---|
1818 | |
---|
1819 | /** |
---|
1820 | * @brief Initialization function for the Q15 PID Control. |
---|
1821 | * @param[in,out] S points to an instance of the Q15 PID structure. |
---|
1822 | * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. |
---|
1823 | */ |
---|
1824 | void arm_pid_init_q15( |
---|
1825 | arm_pid_instance_q15 * S, |
---|
1826 | int32_t resetStateFlag); |
---|
1827 | |
---|
1828 | |
---|
1829 | /** |
---|
1830 | * @brief Reset function for the Q15 PID Control. |
---|
1831 | * @param[in,out] S points to an instance of the q15 PID Control structure |
---|
1832 | */ |
---|
1833 | void arm_pid_reset_q15( |
---|
1834 | arm_pid_instance_q15 * S); |
---|
1835 | |
---|
1836 | |
---|
1837 | /** |
---|
1838 | * @brief Instance structure for the floating-point Linear Interpolate function. |
---|
1839 | */ |
---|
1840 | typedef struct |
---|
1841 | { |
---|
1842 | uint32_t nValues; /**< nValues */ |
---|
1843 | float32_t x1; /**< x1 */ |
---|
1844 | float32_t xSpacing; /**< xSpacing */ |
---|
1845 | float32_t *pYData; /**< pointer to the table of Y values */ |
---|
1846 | } arm_linear_interp_instance_f32; |
---|
1847 | |
---|
1848 | /** |
---|
1849 | * @brief Instance structure for the floating-point bilinear interpolation function. |
---|
1850 | */ |
---|
1851 | typedef struct |
---|
1852 | { |
---|
1853 | uint16_t numRows; /**< number of rows in the data table. */ |
---|
1854 | uint16_t numCols; /**< number of columns in the data table. */ |
---|
1855 | float32_t *pData; /**< points to the data table. */ |
---|
1856 | } arm_bilinear_interp_instance_f32; |
---|
1857 | |
---|
1858 | /** |
---|
1859 | * @brief Instance structure for the Q31 bilinear interpolation function. |
---|
1860 | */ |
---|
1861 | typedef struct |
---|
1862 | { |
---|
1863 | uint16_t numRows; /**< number of rows in the data table. */ |
---|
1864 | uint16_t numCols; /**< number of columns in the data table. */ |
---|
1865 | q31_t *pData; /**< points to the data table. */ |
---|
1866 | } arm_bilinear_interp_instance_q31; |
---|
1867 | |
---|
1868 | /** |
---|
1869 | * @brief Instance structure for the Q15 bilinear interpolation function. |
---|
1870 | */ |
---|
1871 | typedef struct |
---|
1872 | { |
---|
1873 | uint16_t numRows; /**< number of rows in the data table. */ |
---|
1874 | uint16_t numCols; /**< number of columns in the data table. */ |
---|
1875 | q15_t *pData; /**< points to the data table. */ |
---|
1876 | } arm_bilinear_interp_instance_q15; |
---|
1877 | |
---|
1878 | /** |
---|
1879 | * @brief Instance structure for the Q15 bilinear interpolation function. |
---|
1880 | */ |
---|
1881 | typedef struct |
---|
1882 | { |
---|
1883 | uint16_t numRows; /**< number of rows in the data table. */ |
---|
1884 | uint16_t numCols; /**< number of columns in the data table. */ |
---|
1885 | q7_t *pData; /**< points to the data table. */ |
---|
1886 | } arm_bilinear_interp_instance_q7; |
---|
1887 | |
---|
1888 | |
---|
1889 | /** |
---|
1890 | * @brief Q7 vector multiplication. |
---|
1891 | * @param[in] pSrcA points to the first input vector |
---|
1892 | * @param[in] pSrcB points to the second input vector |
---|
1893 | * @param[out] pDst points to the output vector |
---|
1894 | * @param[in] blockSize number of samples in each vector |
---|
1895 | */ |
---|
1896 | void arm_mult_q7( |
---|
1897 | q7_t * pSrcA, |
---|
1898 | q7_t * pSrcB, |
---|
1899 | q7_t * pDst, |
---|
1900 | uint32_t blockSize); |
---|
1901 | |
---|
1902 | |
---|
1903 | /** |
---|
1904 | * @brief Q15 vector multiplication. |
---|
1905 | * @param[in] pSrcA points to the first input vector |
---|
1906 | * @param[in] pSrcB points to the second input vector |
---|
1907 | * @param[out] pDst points to the output vector |
---|
1908 | * @param[in] blockSize number of samples in each vector |
---|
1909 | */ |
---|
1910 | void arm_mult_q15( |
---|
1911 | q15_t * pSrcA, |
---|
1912 | q15_t * pSrcB, |
---|
1913 | q15_t * pDst, |
---|
1914 | uint32_t blockSize); |
---|
1915 | |
---|
1916 | |
---|
1917 | /** |
---|
1918 | * @brief Q31 vector multiplication. |
---|
1919 | * @param[in] pSrcA points to the first input vector |
---|
1920 | * @param[in] pSrcB points to the second input vector |
---|
1921 | * @param[out] pDst points to the output vector |
---|
1922 | * @param[in] blockSize number of samples in each vector |
---|
1923 | */ |
---|
1924 | void arm_mult_q31( |
---|
1925 | q31_t * pSrcA, |
---|
1926 | q31_t * pSrcB, |
---|
1927 | q31_t * pDst, |
---|
1928 | uint32_t blockSize); |
---|
1929 | |
---|
1930 | |
---|
1931 | /** |
---|
1932 | * @brief Floating-point vector multiplication. |
---|
1933 | * @param[in] pSrcA points to the first input vector |
---|
1934 | * @param[in] pSrcB points to the second input vector |
---|
1935 | * @param[out] pDst points to the output vector |
---|
1936 | * @param[in] blockSize number of samples in each vector |
---|
1937 | */ |
---|
1938 | void arm_mult_f32( |
---|
1939 | float32_t * pSrcA, |
---|
1940 | float32_t * pSrcB, |
---|
1941 | float32_t * pDst, |
---|
1942 | uint32_t blockSize); |
---|
1943 | |
---|
1944 | |
---|
1945 | /** |
---|
1946 | * @brief Instance structure for the Q15 CFFT/CIFFT function. |
---|
1947 | */ |
---|
1948 | typedef struct |
---|
1949 | { |
---|
1950 | uint16_t fftLen; /**< length of the FFT. */ |
---|
1951 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
---|
1952 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
---|
1953 | q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */ |
---|
1954 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
---|
1955 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
---|
1956 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
---|
1957 | } arm_cfft_radix2_instance_q15; |
---|
1958 | |
---|
1959 | /* Deprecated */ |
---|
1960 | arm_status arm_cfft_radix2_init_q15( |
---|
1961 | arm_cfft_radix2_instance_q15 * S, |
---|
1962 | uint16_t fftLen, |
---|
1963 | uint8_t ifftFlag, |
---|
1964 | uint8_t bitReverseFlag); |
---|
1965 | |
---|
1966 | /* Deprecated */ |
---|
1967 | void arm_cfft_radix2_q15( |
---|
1968 | const arm_cfft_radix2_instance_q15 * S, |
---|
1969 | q15_t * pSrc); |
---|
1970 | |
---|
1971 | |
---|
1972 | /** |
---|
1973 | * @brief Instance structure for the Q15 CFFT/CIFFT function. |
---|
1974 | */ |
---|
1975 | typedef struct |
---|
1976 | { |
---|
1977 | uint16_t fftLen; /**< length of the FFT. */ |
---|
1978 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
---|
1979 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
---|
1980 | q15_t *pTwiddle; /**< points to the twiddle factor table. */ |
---|
1981 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
---|
1982 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
---|
1983 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
---|
1984 | } arm_cfft_radix4_instance_q15; |
---|
1985 | |
---|
1986 | /* Deprecated */ |
---|
1987 | arm_status arm_cfft_radix4_init_q15( |
---|
1988 | arm_cfft_radix4_instance_q15 * S, |
---|
1989 | uint16_t fftLen, |
---|
1990 | uint8_t ifftFlag, |
---|
1991 | uint8_t bitReverseFlag); |
---|
1992 | |
---|
1993 | /* Deprecated */ |
---|
1994 | void arm_cfft_radix4_q15( |
---|
1995 | const arm_cfft_radix4_instance_q15 * S, |
---|
1996 | q15_t * pSrc); |
---|
1997 | |
---|
1998 | /** |
---|
1999 | * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function. |
---|
2000 | */ |
---|
2001 | typedef struct |
---|
2002 | { |
---|
2003 | uint16_t fftLen; /**< length of the FFT. */ |
---|
2004 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
---|
2005 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
---|
2006 | q31_t *pTwiddle; /**< points to the Twiddle factor table. */ |
---|
2007 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
---|
2008 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
---|
2009 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
---|
2010 | } arm_cfft_radix2_instance_q31; |
---|
2011 | |
---|
2012 | /* Deprecated */ |
---|
2013 | arm_status arm_cfft_radix2_init_q31( |
---|
2014 | arm_cfft_radix2_instance_q31 * S, |
---|
2015 | uint16_t fftLen, |
---|
2016 | uint8_t ifftFlag, |
---|
2017 | uint8_t bitReverseFlag); |
---|
2018 | |
---|
2019 | /* Deprecated */ |
---|
2020 | void arm_cfft_radix2_q31( |
---|
2021 | const arm_cfft_radix2_instance_q31 * S, |
---|
2022 | q31_t * pSrc); |
---|
2023 | |
---|
2024 | /** |
---|
2025 | * @brief Instance structure for the Q31 CFFT/CIFFT function. |
---|
2026 | */ |
---|
2027 | typedef struct |
---|
2028 | { |
---|
2029 | uint16_t fftLen; /**< length of the FFT. */ |
---|
2030 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
---|
2031 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
---|
2032 | q31_t *pTwiddle; /**< points to the twiddle factor table. */ |
---|
2033 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
---|
2034 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
---|
2035 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
---|
2036 | } arm_cfft_radix4_instance_q31; |
---|
2037 | |
---|
2038 | /* Deprecated */ |
---|
2039 | void arm_cfft_radix4_q31( |
---|
2040 | const arm_cfft_radix4_instance_q31 * S, |
---|
2041 | q31_t * pSrc); |
---|
2042 | |
---|
2043 | /* Deprecated */ |
---|
2044 | arm_status arm_cfft_radix4_init_q31( |
---|
2045 | arm_cfft_radix4_instance_q31 * S, |
---|
2046 | uint16_t fftLen, |
---|
2047 | uint8_t ifftFlag, |
---|
2048 | uint8_t bitReverseFlag); |
---|
2049 | |
---|
2050 | /** |
---|
2051 | * @brief Instance structure for the floating-point CFFT/CIFFT function. |
---|
2052 | */ |
---|
2053 | typedef struct |
---|
2054 | { |
---|
2055 | uint16_t fftLen; /**< length of the FFT. */ |
---|
2056 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
---|
2057 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
---|
2058 | float32_t *pTwiddle; /**< points to the Twiddle factor table. */ |
---|
2059 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
---|
2060 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
---|
2061 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
---|
2062 | float32_t onebyfftLen; /**< value of 1/fftLen. */ |
---|
2063 | } arm_cfft_radix2_instance_f32; |
---|
2064 | |
---|
2065 | /* Deprecated */ |
---|
2066 | arm_status arm_cfft_radix2_init_f32( |
---|
2067 | arm_cfft_radix2_instance_f32 * S, |
---|
2068 | uint16_t fftLen, |
---|
2069 | uint8_t ifftFlag, |
---|
2070 | uint8_t bitReverseFlag); |
---|
2071 | |
---|
2072 | /* Deprecated */ |
---|
2073 | void arm_cfft_radix2_f32( |
---|
2074 | const arm_cfft_radix2_instance_f32 * S, |
---|
2075 | float32_t * pSrc); |
---|
2076 | |
---|
2077 | /** |
---|
2078 | * @brief Instance structure for the floating-point CFFT/CIFFT function. |
---|
2079 | */ |
---|
2080 | typedef struct |
---|
2081 | { |
---|
2082 | uint16_t fftLen; /**< length of the FFT. */ |
---|
2083 | uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */ |
---|
2084 | uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */ |
---|
2085 | float32_t *pTwiddle; /**< points to the Twiddle factor table. */ |
---|
2086 | uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
---|
2087 | uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
---|
2088 | uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */ |
---|
2089 | float32_t onebyfftLen; /**< value of 1/fftLen. */ |
---|
2090 | } arm_cfft_radix4_instance_f32; |
---|
2091 | |
---|
2092 | /* Deprecated */ |
---|
2093 | arm_status arm_cfft_radix4_init_f32( |
---|
2094 | arm_cfft_radix4_instance_f32 * S, |
---|
2095 | uint16_t fftLen, |
---|
2096 | uint8_t ifftFlag, |
---|
2097 | uint8_t bitReverseFlag); |
---|
2098 | |
---|
2099 | /* Deprecated */ |
---|
2100 | void arm_cfft_radix4_f32( |
---|
2101 | const arm_cfft_radix4_instance_f32 * S, |
---|
2102 | float32_t * pSrc); |
---|
2103 | |
---|
2104 | /** |
---|
2105 | * @brief Instance structure for the fixed-point CFFT/CIFFT function. |
---|
2106 | */ |
---|
2107 | typedef struct |
---|
2108 | { |
---|
2109 | uint16_t fftLen; /**< length of the FFT. */ |
---|
2110 | const q15_t *pTwiddle; /**< points to the Twiddle factor table. */ |
---|
2111 | const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
---|
2112 | uint16_t bitRevLength; /**< bit reversal table length. */ |
---|
2113 | } arm_cfft_instance_q15; |
---|
2114 | |
---|
2115 | void arm_cfft_q15( |
---|
2116 | const arm_cfft_instance_q15 * S, |
---|
2117 | q15_t * p1, |
---|
2118 | uint8_t ifftFlag, |
---|
2119 | uint8_t bitReverseFlag); |
---|
2120 | |
---|
2121 | /** |
---|
2122 | * @brief Instance structure for the fixed-point CFFT/CIFFT function. |
---|
2123 | */ |
---|
2124 | typedef struct |
---|
2125 | { |
---|
2126 | uint16_t fftLen; /**< length of the FFT. */ |
---|
2127 | const q31_t *pTwiddle; /**< points to the Twiddle factor table. */ |
---|
2128 | const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
---|
2129 | uint16_t bitRevLength; /**< bit reversal table length. */ |
---|
2130 | } arm_cfft_instance_q31; |
---|
2131 | |
---|
2132 | void arm_cfft_q31( |
---|
2133 | const arm_cfft_instance_q31 * S, |
---|
2134 | q31_t * p1, |
---|
2135 | uint8_t ifftFlag, |
---|
2136 | uint8_t bitReverseFlag); |
---|
2137 | |
---|
2138 | /** |
---|
2139 | * @brief Instance structure for the floating-point CFFT/CIFFT function. |
---|
2140 | */ |
---|
2141 | typedef struct |
---|
2142 | { |
---|
2143 | uint16_t fftLen; /**< length of the FFT. */ |
---|
2144 | const float32_t *pTwiddle; /**< points to the Twiddle factor table. */ |
---|
2145 | const uint16_t *pBitRevTable; /**< points to the bit reversal table. */ |
---|
2146 | uint16_t bitRevLength; /**< bit reversal table length. */ |
---|
2147 | } arm_cfft_instance_f32; |
---|
2148 | |
---|
2149 | void arm_cfft_f32( |
---|
2150 | const arm_cfft_instance_f32 * S, |
---|
2151 | float32_t * p1, |
---|
2152 | uint8_t ifftFlag, |
---|
2153 | uint8_t bitReverseFlag); |
---|
2154 | |
---|
2155 | /** |
---|
2156 | * @brief Instance structure for the Q15 RFFT/RIFFT function. |
---|
2157 | */ |
---|
2158 | typedef struct |
---|
2159 | { |
---|
2160 | uint32_t fftLenReal; /**< length of the real FFT. */ |
---|
2161 | uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ |
---|
2162 | uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ |
---|
2163 | uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
---|
2164 | q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ |
---|
2165 | q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ |
---|
2166 | const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */ |
---|
2167 | } arm_rfft_instance_q15; |
---|
2168 | |
---|
2169 | arm_status arm_rfft_init_q15( |
---|
2170 | arm_rfft_instance_q15 * S, |
---|
2171 | uint32_t fftLenReal, |
---|
2172 | uint32_t ifftFlagR, |
---|
2173 | uint32_t bitReverseFlag); |
---|
2174 | |
---|
2175 | void arm_rfft_q15( |
---|
2176 | const arm_rfft_instance_q15 * S, |
---|
2177 | q15_t * pSrc, |
---|
2178 | q15_t * pDst); |
---|
2179 | |
---|
2180 | /** |
---|
2181 | * @brief Instance structure for the Q31 RFFT/RIFFT function. |
---|
2182 | */ |
---|
2183 | typedef struct |
---|
2184 | { |
---|
2185 | uint32_t fftLenReal; /**< length of the real FFT. */ |
---|
2186 | uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ |
---|
2187 | uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ |
---|
2188 | uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
---|
2189 | q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ |
---|
2190 | q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ |
---|
2191 | const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */ |
---|
2192 | } arm_rfft_instance_q31; |
---|
2193 | |
---|
2194 | arm_status arm_rfft_init_q31( |
---|
2195 | arm_rfft_instance_q31 * S, |
---|
2196 | uint32_t fftLenReal, |
---|
2197 | uint32_t ifftFlagR, |
---|
2198 | uint32_t bitReverseFlag); |
---|
2199 | |
---|
2200 | void arm_rfft_q31( |
---|
2201 | const arm_rfft_instance_q31 * S, |
---|
2202 | q31_t * pSrc, |
---|
2203 | q31_t * pDst); |
---|
2204 | |
---|
2205 | /** |
---|
2206 | * @brief Instance structure for the floating-point RFFT/RIFFT function. |
---|
2207 | */ |
---|
2208 | typedef struct |
---|
2209 | { |
---|
2210 | uint32_t fftLenReal; /**< length of the real FFT. */ |
---|
2211 | uint16_t fftLenBy2; /**< length of the complex FFT. */ |
---|
2212 | uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */ |
---|
2213 | uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */ |
---|
2214 | uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */ |
---|
2215 | float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */ |
---|
2216 | float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */ |
---|
2217 | arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ |
---|
2218 | } arm_rfft_instance_f32; |
---|
2219 | |
---|
2220 | arm_status arm_rfft_init_f32( |
---|
2221 | arm_rfft_instance_f32 * S, |
---|
2222 | arm_cfft_radix4_instance_f32 * S_CFFT, |
---|
2223 | uint32_t fftLenReal, |
---|
2224 | uint32_t ifftFlagR, |
---|
2225 | uint32_t bitReverseFlag); |
---|
2226 | |
---|
2227 | void arm_rfft_f32( |
---|
2228 | const arm_rfft_instance_f32 * S, |
---|
2229 | float32_t * pSrc, |
---|
2230 | float32_t * pDst); |
---|
2231 | |
---|
2232 | /** |
---|
2233 | * @brief Instance structure for the floating-point RFFT/RIFFT function. |
---|
2234 | */ |
---|
2235 | typedef struct |
---|
2236 | { |
---|
2237 | arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */ |
---|
2238 | uint16_t fftLenRFFT; /**< length of the real sequence */ |
---|
2239 | float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */ |
---|
2240 | } arm_rfft_fast_instance_f32 ; |
---|
2241 | |
---|
2242 | arm_status arm_rfft_fast_init_f32 ( |
---|
2243 | arm_rfft_fast_instance_f32 * S, |
---|
2244 | uint16_t fftLen); |
---|
2245 | |
---|
2246 | void arm_rfft_fast_f32( |
---|
2247 | arm_rfft_fast_instance_f32 * S, |
---|
2248 | float32_t * p, float32_t * pOut, |
---|
2249 | uint8_t ifftFlag); |
---|
2250 | |
---|
2251 | /** |
---|
2252 | * @brief Instance structure for the floating-point DCT4/IDCT4 function. |
---|
2253 | */ |
---|
2254 | typedef struct |
---|
2255 | { |
---|
2256 | uint16_t N; /**< length of the DCT4. */ |
---|
2257 | uint16_t Nby2; /**< half of the length of the DCT4. */ |
---|
2258 | float32_t normalize; /**< normalizing factor. */ |
---|
2259 | float32_t *pTwiddle; /**< points to the twiddle factor table. */ |
---|
2260 | float32_t *pCosFactor; /**< points to the cosFactor table. */ |
---|
2261 | arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */ |
---|
2262 | arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */ |
---|
2263 | } arm_dct4_instance_f32; |
---|
2264 | |
---|
2265 | |
---|
2266 | /** |
---|
2267 | * @brief Initialization function for the floating-point DCT4/IDCT4. |
---|
2268 | * @param[in,out] S points to an instance of floating-point DCT4/IDCT4 structure. |
---|
2269 | * @param[in] S_RFFT points to an instance of floating-point RFFT/RIFFT structure. |
---|
2270 | * @param[in] S_CFFT points to an instance of floating-point CFFT/CIFFT structure. |
---|
2271 | * @param[in] N length of the DCT4. |
---|
2272 | * @param[in] Nby2 half of the length of the DCT4. |
---|
2273 | * @param[in] normalize normalizing factor. |
---|
2274 | * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length. |
---|
2275 | */ |
---|
2276 | arm_status arm_dct4_init_f32( |
---|
2277 | arm_dct4_instance_f32 * S, |
---|
2278 | arm_rfft_instance_f32 * S_RFFT, |
---|
2279 | arm_cfft_radix4_instance_f32 * S_CFFT, |
---|
2280 | uint16_t N, |
---|
2281 | uint16_t Nby2, |
---|
2282 | float32_t normalize); |
---|
2283 | |
---|
2284 | |
---|
2285 | /** |
---|
2286 | * @brief Processing function for the floating-point DCT4/IDCT4. |
---|
2287 | * @param[in] S points to an instance of the floating-point DCT4/IDCT4 structure. |
---|
2288 | * @param[in] pState points to state buffer. |
---|
2289 | * @param[in,out] pInlineBuffer points to the in-place input and output buffer. |
---|
2290 | */ |
---|
2291 | void arm_dct4_f32( |
---|
2292 | const arm_dct4_instance_f32 * S, |
---|
2293 | float32_t * pState, |
---|
2294 | float32_t * pInlineBuffer); |
---|
2295 | |
---|
2296 | |
---|
2297 | /** |
---|
2298 | * @brief Instance structure for the Q31 DCT4/IDCT4 function. |
---|
2299 | */ |
---|
2300 | typedef struct |
---|
2301 | { |
---|
2302 | uint16_t N; /**< length of the DCT4. */ |
---|
2303 | uint16_t Nby2; /**< half of the length of the DCT4. */ |
---|
2304 | q31_t normalize; /**< normalizing factor. */ |
---|
2305 | q31_t *pTwiddle; /**< points to the twiddle factor table. */ |
---|
2306 | q31_t *pCosFactor; /**< points to the cosFactor table. */ |
---|
2307 | arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */ |
---|
2308 | arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */ |
---|
2309 | } arm_dct4_instance_q31; |
---|
2310 | |
---|
2311 | |
---|
2312 | /** |
---|
2313 | * @brief Initialization function for the Q31 DCT4/IDCT4. |
---|
2314 | * @param[in,out] S points to an instance of Q31 DCT4/IDCT4 structure. |
---|
2315 | * @param[in] S_RFFT points to an instance of Q31 RFFT/RIFFT structure |
---|
2316 | * @param[in] S_CFFT points to an instance of Q31 CFFT/CIFFT structure |
---|
2317 | * @param[in] N length of the DCT4. |
---|
2318 | * @param[in] Nby2 half of the length of the DCT4. |
---|
2319 | * @param[in] normalize normalizing factor. |
---|
2320 | * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. |
---|
2321 | */ |
---|
2322 | arm_status arm_dct4_init_q31( |
---|
2323 | arm_dct4_instance_q31 * S, |
---|
2324 | arm_rfft_instance_q31 * S_RFFT, |
---|
2325 | arm_cfft_radix4_instance_q31 * S_CFFT, |
---|
2326 | uint16_t N, |
---|
2327 | uint16_t Nby2, |
---|
2328 | q31_t normalize); |
---|
2329 | |
---|
2330 | |
---|
2331 | /** |
---|
2332 | * @brief Processing function for the Q31 DCT4/IDCT4. |
---|
2333 | * @param[in] S points to an instance of the Q31 DCT4 structure. |
---|
2334 | * @param[in] pState points to state buffer. |
---|
2335 | * @param[in,out] pInlineBuffer points to the in-place input and output buffer. |
---|
2336 | */ |
---|
2337 | void arm_dct4_q31( |
---|
2338 | const arm_dct4_instance_q31 * S, |
---|
2339 | q31_t * pState, |
---|
2340 | q31_t * pInlineBuffer); |
---|
2341 | |
---|
2342 | |
---|
2343 | /** |
---|
2344 | * @brief Instance structure for the Q15 DCT4/IDCT4 function. |
---|
2345 | */ |
---|
2346 | typedef struct |
---|
2347 | { |
---|
2348 | uint16_t N; /**< length of the DCT4. */ |
---|
2349 | uint16_t Nby2; /**< half of the length of the DCT4. */ |
---|
2350 | q15_t normalize; /**< normalizing factor. */ |
---|
2351 | q15_t *pTwiddle; /**< points to the twiddle factor table. */ |
---|
2352 | q15_t *pCosFactor; /**< points to the cosFactor table. */ |
---|
2353 | arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */ |
---|
2354 | arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */ |
---|
2355 | } arm_dct4_instance_q15; |
---|
2356 | |
---|
2357 | |
---|
2358 | /** |
---|
2359 | * @brief Initialization function for the Q15 DCT4/IDCT4. |
---|
2360 | * @param[in,out] S points to an instance of Q15 DCT4/IDCT4 structure. |
---|
2361 | * @param[in] S_RFFT points to an instance of Q15 RFFT/RIFFT structure. |
---|
2362 | * @param[in] S_CFFT points to an instance of Q15 CFFT/CIFFT structure. |
---|
2363 | * @param[in] N length of the DCT4. |
---|
2364 | * @param[in] Nby2 half of the length of the DCT4. |
---|
2365 | * @param[in] normalize normalizing factor. |
---|
2366 | * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length. |
---|
2367 | */ |
---|
2368 | arm_status arm_dct4_init_q15( |
---|
2369 | arm_dct4_instance_q15 * S, |
---|
2370 | arm_rfft_instance_q15 * S_RFFT, |
---|
2371 | arm_cfft_radix4_instance_q15 * S_CFFT, |
---|
2372 | uint16_t N, |
---|
2373 | uint16_t Nby2, |
---|
2374 | q15_t normalize); |
---|
2375 | |
---|
2376 | |
---|
2377 | /** |
---|
2378 | * @brief Processing function for the Q15 DCT4/IDCT4. |
---|
2379 | * @param[in] S points to an instance of the Q15 DCT4 structure. |
---|
2380 | * @param[in] pState points to state buffer. |
---|
2381 | * @param[in,out] pInlineBuffer points to the in-place input and output buffer. |
---|
2382 | */ |
---|
2383 | void arm_dct4_q15( |
---|
2384 | const arm_dct4_instance_q15 * S, |
---|
2385 | q15_t * pState, |
---|
2386 | q15_t * pInlineBuffer); |
---|
2387 | |
---|
2388 | |
---|
2389 | /** |
---|
2390 | * @brief Floating-point vector addition. |
---|
2391 | * @param[in] pSrcA points to the first input vector |
---|
2392 | * @param[in] pSrcB points to the second input vector |
---|
2393 | * @param[out] pDst points to the output vector |
---|
2394 | * @param[in] blockSize number of samples in each vector |
---|
2395 | */ |
---|
2396 | void arm_add_f32( |
---|
2397 | float32_t * pSrcA, |
---|
2398 | float32_t * pSrcB, |
---|
2399 | float32_t * pDst, |
---|
2400 | uint32_t blockSize); |
---|
2401 | |
---|
2402 | |
---|
2403 | /** |
---|
2404 | * @brief Q7 vector addition. |
---|
2405 | * @param[in] pSrcA points to the first input vector |
---|
2406 | * @param[in] pSrcB points to the second input vector |
---|
2407 | * @param[out] pDst points to the output vector |
---|
2408 | * @param[in] blockSize number of samples in each vector |
---|
2409 | */ |
---|
2410 | void arm_add_q7( |
---|
2411 | q7_t * pSrcA, |
---|
2412 | q7_t * pSrcB, |
---|
2413 | q7_t * pDst, |
---|
2414 | uint32_t blockSize); |
---|
2415 | |
---|
2416 | |
---|
2417 | /** |
---|
2418 | * @brief Q15 vector addition. |
---|
2419 | * @param[in] pSrcA points to the first input vector |
---|
2420 | * @param[in] pSrcB points to the second input vector |
---|
2421 | * @param[out] pDst points to the output vector |
---|
2422 | * @param[in] blockSize number of samples in each vector |
---|
2423 | */ |
---|
2424 | void arm_add_q15( |
---|
2425 | q15_t * pSrcA, |
---|
2426 | q15_t * pSrcB, |
---|
2427 | q15_t * pDst, |
---|
2428 | uint32_t blockSize); |
---|
2429 | |
---|
2430 | |
---|
2431 | /** |
---|
2432 | * @brief Q31 vector addition. |
---|
2433 | * @param[in] pSrcA points to the first input vector |
---|
2434 | * @param[in] pSrcB points to the second input vector |
---|
2435 | * @param[out] pDst points to the output vector |
---|
2436 | * @param[in] blockSize number of samples in each vector |
---|
2437 | */ |
---|
2438 | void arm_add_q31( |
---|
2439 | q31_t * pSrcA, |
---|
2440 | q31_t * pSrcB, |
---|
2441 | q31_t * pDst, |
---|
2442 | uint32_t blockSize); |
---|
2443 | |
---|
2444 | |
---|
2445 | /** |
---|
2446 | * @brief Floating-point vector subtraction. |
---|
2447 | * @param[in] pSrcA points to the first input vector |
---|
2448 | * @param[in] pSrcB points to the second input vector |
---|
2449 | * @param[out] pDst points to the output vector |
---|
2450 | * @param[in] blockSize number of samples in each vector |
---|
2451 | */ |
---|
2452 | void arm_sub_f32( |
---|
2453 | float32_t * pSrcA, |
---|
2454 | float32_t * pSrcB, |
---|
2455 | float32_t * pDst, |
---|
2456 | uint32_t blockSize); |
---|
2457 | |
---|
2458 | |
---|
2459 | /** |
---|
2460 | * @brief Q7 vector subtraction. |
---|
2461 | * @param[in] pSrcA points to the first input vector |
---|
2462 | * @param[in] pSrcB points to the second input vector |
---|
2463 | * @param[out] pDst points to the output vector |
---|
2464 | * @param[in] blockSize number of samples in each vector |
---|
2465 | */ |
---|
2466 | void arm_sub_q7( |
---|
2467 | q7_t * pSrcA, |
---|
2468 | q7_t * pSrcB, |
---|
2469 | q7_t * pDst, |
---|
2470 | uint32_t blockSize); |
---|
2471 | |
---|
2472 | |
---|
2473 | /** |
---|
2474 | * @brief Q15 vector subtraction. |
---|
2475 | * @param[in] pSrcA points to the first input vector |
---|
2476 | * @param[in] pSrcB points to the second input vector |
---|
2477 | * @param[out] pDst points to the output vector |
---|
2478 | * @param[in] blockSize number of samples in each vector |
---|
2479 | */ |
---|
2480 | void arm_sub_q15( |
---|
2481 | q15_t * pSrcA, |
---|
2482 | q15_t * pSrcB, |
---|
2483 | q15_t * pDst, |
---|
2484 | uint32_t blockSize); |
---|
2485 | |
---|
2486 | |
---|
2487 | /** |
---|
2488 | * @brief Q31 vector subtraction. |
---|
2489 | * @param[in] pSrcA points to the first input vector |
---|
2490 | * @param[in] pSrcB points to the second input vector |
---|
2491 | * @param[out] pDst points to the output vector |
---|
2492 | * @param[in] blockSize number of samples in each vector |
---|
2493 | */ |
---|
2494 | void arm_sub_q31( |
---|
2495 | q31_t * pSrcA, |
---|
2496 | q31_t * pSrcB, |
---|
2497 | q31_t * pDst, |
---|
2498 | uint32_t blockSize); |
---|
2499 | |
---|
2500 | |
---|
2501 | /** |
---|
2502 | * @brief Multiplies a floating-point vector by a scalar. |
---|
2503 | * @param[in] pSrc points to the input vector |
---|
2504 | * @param[in] scale scale factor to be applied |
---|
2505 | * @param[out] pDst points to the output vector |
---|
2506 | * @param[in] blockSize number of samples in the vector |
---|
2507 | */ |
---|
2508 | void arm_scale_f32( |
---|
2509 | float32_t * pSrc, |
---|
2510 | float32_t scale, |
---|
2511 | float32_t * pDst, |
---|
2512 | uint32_t blockSize); |
---|
2513 | |
---|
2514 | |
---|
2515 | /** |
---|
2516 | * @brief Multiplies a Q7 vector by a scalar. |
---|
2517 | * @param[in] pSrc points to the input vector |
---|
2518 | * @param[in] scaleFract fractional portion of the scale value |
---|
2519 | * @param[in] shift number of bits to shift the result by |
---|
2520 | * @param[out] pDst points to the output vector |
---|
2521 | * @param[in] blockSize number of samples in the vector |
---|
2522 | */ |
---|
2523 | void arm_scale_q7( |
---|
2524 | q7_t * pSrc, |
---|
2525 | q7_t scaleFract, |
---|
2526 | int8_t shift, |
---|
2527 | q7_t * pDst, |
---|
2528 | uint32_t blockSize); |
---|
2529 | |
---|
2530 | |
---|
2531 | /** |
---|
2532 | * @brief Multiplies a Q15 vector by a scalar. |
---|
2533 | * @param[in] pSrc points to the input vector |
---|
2534 | * @param[in] scaleFract fractional portion of the scale value |
---|
2535 | * @param[in] shift number of bits to shift the result by |
---|
2536 | * @param[out] pDst points to the output vector |
---|
2537 | * @param[in] blockSize number of samples in the vector |
---|
2538 | */ |
---|
2539 | void arm_scale_q15( |
---|
2540 | q15_t * pSrc, |
---|
2541 | q15_t scaleFract, |
---|
2542 | int8_t shift, |
---|
2543 | q15_t * pDst, |
---|
2544 | uint32_t blockSize); |
---|
2545 | |
---|
2546 | |
---|
2547 | /** |
---|
2548 | * @brief Multiplies a Q31 vector by a scalar. |
---|
2549 | * @param[in] pSrc points to the input vector |
---|
2550 | * @param[in] scaleFract fractional portion of the scale value |
---|
2551 | * @param[in] shift number of bits to shift the result by |
---|
2552 | * @param[out] pDst points to the output vector |
---|
2553 | * @param[in] blockSize number of samples in the vector |
---|
2554 | */ |
---|
2555 | void arm_scale_q31( |
---|
2556 | q31_t * pSrc, |
---|
2557 | q31_t scaleFract, |
---|
2558 | int8_t shift, |
---|
2559 | q31_t * pDst, |
---|
2560 | uint32_t blockSize); |
---|
2561 | |
---|
2562 | |
---|
2563 | /** |
---|
2564 | * @brief Q7 vector absolute value. |
---|
2565 | * @param[in] pSrc points to the input buffer |
---|
2566 | * @param[out] pDst points to the output buffer |
---|
2567 | * @param[in] blockSize number of samples in each vector |
---|
2568 | */ |
---|
2569 | void arm_abs_q7( |
---|
2570 | q7_t * pSrc, |
---|
2571 | q7_t * pDst, |
---|
2572 | uint32_t blockSize); |
---|
2573 | |
---|
2574 | |
---|
2575 | /** |
---|
2576 | * @brief Floating-point vector absolute value. |
---|
2577 | * @param[in] pSrc points to the input buffer |
---|
2578 | * @param[out] pDst points to the output buffer |
---|
2579 | * @param[in] blockSize number of samples in each vector |
---|
2580 | */ |
---|
2581 | void arm_abs_f32( |
---|
2582 | float32_t * pSrc, |
---|
2583 | float32_t * pDst, |
---|
2584 | uint32_t blockSize); |
---|
2585 | |
---|
2586 | |
---|
2587 | /** |
---|
2588 | * @brief Q15 vector absolute value. |
---|
2589 | * @param[in] pSrc points to the input buffer |
---|
2590 | * @param[out] pDst points to the output buffer |
---|
2591 | * @param[in] blockSize number of samples in each vector |
---|
2592 | */ |
---|
2593 | void arm_abs_q15( |
---|
2594 | q15_t * pSrc, |
---|
2595 | q15_t * pDst, |
---|
2596 | uint32_t blockSize); |
---|
2597 | |
---|
2598 | |
---|
2599 | /** |
---|
2600 | * @brief Q31 vector absolute value. |
---|
2601 | * @param[in] pSrc points to the input buffer |
---|
2602 | * @param[out] pDst points to the output buffer |
---|
2603 | * @param[in] blockSize number of samples in each vector |
---|
2604 | */ |
---|
2605 | void arm_abs_q31( |
---|
2606 | q31_t * pSrc, |
---|
2607 | q31_t * pDst, |
---|
2608 | uint32_t blockSize); |
---|
2609 | |
---|
2610 | |
---|
2611 | /** |
---|
2612 | * @brief Dot product of floating-point vectors. |
---|
2613 | * @param[in] pSrcA points to the first input vector |
---|
2614 | * @param[in] pSrcB points to the second input vector |
---|
2615 | * @param[in] blockSize number of samples in each vector |
---|
2616 | * @param[out] result output result returned here |
---|
2617 | */ |
---|
2618 | void arm_dot_prod_f32( |
---|
2619 | float32_t * pSrcA, |
---|
2620 | float32_t * pSrcB, |
---|
2621 | uint32_t blockSize, |
---|
2622 | float32_t * result); |
---|
2623 | |
---|
2624 | |
---|
2625 | /** |
---|
2626 | * @brief Dot product of Q7 vectors. |
---|
2627 | * @param[in] pSrcA points to the first input vector |
---|
2628 | * @param[in] pSrcB points to the second input vector |
---|
2629 | * @param[in] blockSize number of samples in each vector |
---|
2630 | * @param[out] result output result returned here |
---|
2631 | */ |
---|
2632 | void arm_dot_prod_q7( |
---|
2633 | q7_t * pSrcA, |
---|
2634 | q7_t * pSrcB, |
---|
2635 | uint32_t blockSize, |
---|
2636 | q31_t * result); |
---|
2637 | |
---|
2638 | |
---|
2639 | /** |
---|
2640 | * @brief Dot product of Q15 vectors. |
---|
2641 | * @param[in] pSrcA points to the first input vector |
---|
2642 | * @param[in] pSrcB points to the second input vector |
---|
2643 | * @param[in] blockSize number of samples in each vector |
---|
2644 | * @param[out] result output result returned here |
---|
2645 | */ |
---|
2646 | void arm_dot_prod_q15( |
---|
2647 | q15_t * pSrcA, |
---|
2648 | q15_t * pSrcB, |
---|
2649 | uint32_t blockSize, |
---|
2650 | q63_t * result); |
---|
2651 | |
---|
2652 | |
---|
2653 | /** |
---|
2654 | * @brief Dot product of Q31 vectors. |
---|
2655 | * @param[in] pSrcA points to the first input vector |
---|
2656 | * @param[in] pSrcB points to the second input vector |
---|
2657 | * @param[in] blockSize number of samples in each vector |
---|
2658 | * @param[out] result output result returned here |
---|
2659 | */ |
---|
2660 | void arm_dot_prod_q31( |
---|
2661 | q31_t * pSrcA, |
---|
2662 | q31_t * pSrcB, |
---|
2663 | uint32_t blockSize, |
---|
2664 | q63_t * result); |
---|
2665 | |
---|
2666 | |
---|
2667 | /** |
---|
2668 | * @brief Shifts the elements of a Q7 vector a specified number of bits. |
---|
2669 | * @param[in] pSrc points to the input vector |
---|
2670 | * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. |
---|
2671 | * @param[out] pDst points to the output vector |
---|
2672 | * @param[in] blockSize number of samples in the vector |
---|
2673 | */ |
---|
2674 | void arm_shift_q7( |
---|
2675 | q7_t * pSrc, |
---|
2676 | int8_t shiftBits, |
---|
2677 | q7_t * pDst, |
---|
2678 | uint32_t blockSize); |
---|
2679 | |
---|
2680 | |
---|
2681 | /** |
---|
2682 | * @brief Shifts the elements of a Q15 vector a specified number of bits. |
---|
2683 | * @param[in] pSrc points to the input vector |
---|
2684 | * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. |
---|
2685 | * @param[out] pDst points to the output vector |
---|
2686 | * @param[in] blockSize number of samples in the vector |
---|
2687 | */ |
---|
2688 | void arm_shift_q15( |
---|
2689 | q15_t * pSrc, |
---|
2690 | int8_t shiftBits, |
---|
2691 | q15_t * pDst, |
---|
2692 | uint32_t blockSize); |
---|
2693 | |
---|
2694 | |
---|
2695 | /** |
---|
2696 | * @brief Shifts the elements of a Q31 vector a specified number of bits. |
---|
2697 | * @param[in] pSrc points to the input vector |
---|
2698 | * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. |
---|
2699 | * @param[out] pDst points to the output vector |
---|
2700 | * @param[in] blockSize number of samples in the vector |
---|
2701 | */ |
---|
2702 | void arm_shift_q31( |
---|
2703 | q31_t * pSrc, |
---|
2704 | int8_t shiftBits, |
---|
2705 | q31_t * pDst, |
---|
2706 | uint32_t blockSize); |
---|
2707 | |
---|
2708 | |
---|
2709 | /** |
---|
2710 | * @brief Adds a constant offset to a floating-point vector. |
---|
2711 | * @param[in] pSrc points to the input vector |
---|
2712 | * @param[in] offset is the offset to be added |
---|
2713 | * @param[out] pDst points to the output vector |
---|
2714 | * @param[in] blockSize number of samples in the vector |
---|
2715 | */ |
---|
2716 | void arm_offset_f32( |
---|
2717 | float32_t * pSrc, |
---|
2718 | float32_t offset, |
---|
2719 | float32_t * pDst, |
---|
2720 | uint32_t blockSize); |
---|
2721 | |
---|
2722 | |
---|
2723 | /** |
---|
2724 | * @brief Adds a constant offset to a Q7 vector. |
---|
2725 | * @param[in] pSrc points to the input vector |
---|
2726 | * @param[in] offset is the offset to be added |
---|
2727 | * @param[out] pDst points to the output vector |
---|
2728 | * @param[in] blockSize number of samples in the vector |
---|
2729 | */ |
---|
2730 | void arm_offset_q7( |
---|
2731 | q7_t * pSrc, |
---|
2732 | q7_t offset, |
---|
2733 | q7_t * pDst, |
---|
2734 | uint32_t blockSize); |
---|
2735 | |
---|
2736 | |
---|
2737 | /** |
---|
2738 | * @brief Adds a constant offset to a Q15 vector. |
---|
2739 | * @param[in] pSrc points to the input vector |
---|
2740 | * @param[in] offset is the offset to be added |
---|
2741 | * @param[out] pDst points to the output vector |
---|
2742 | * @param[in] blockSize number of samples in the vector |
---|
2743 | */ |
---|
2744 | void arm_offset_q15( |
---|
2745 | q15_t * pSrc, |
---|
2746 | q15_t offset, |
---|
2747 | q15_t * pDst, |
---|
2748 | uint32_t blockSize); |
---|
2749 | |
---|
2750 | |
---|
2751 | /** |
---|
2752 | * @brief Adds a constant offset to a Q31 vector. |
---|
2753 | * @param[in] pSrc points to the input vector |
---|
2754 | * @param[in] offset is the offset to be added |
---|
2755 | * @param[out] pDst points to the output vector |
---|
2756 | * @param[in] blockSize number of samples in the vector |
---|
2757 | */ |
---|
2758 | void arm_offset_q31( |
---|
2759 | q31_t * pSrc, |
---|
2760 | q31_t offset, |
---|
2761 | q31_t * pDst, |
---|
2762 | uint32_t blockSize); |
---|
2763 | |
---|
2764 | |
---|
2765 | /** |
---|
2766 | * @brief Negates the elements of a floating-point vector. |
---|
2767 | * @param[in] pSrc points to the input vector |
---|
2768 | * @param[out] pDst points to the output vector |
---|
2769 | * @param[in] blockSize number of samples in the vector |
---|
2770 | */ |
---|
2771 | void arm_negate_f32( |
---|
2772 | float32_t * pSrc, |
---|
2773 | float32_t * pDst, |
---|
2774 | uint32_t blockSize); |
---|
2775 | |
---|
2776 | |
---|
2777 | /** |
---|
2778 | * @brief Negates the elements of a Q7 vector. |
---|
2779 | * @param[in] pSrc points to the input vector |
---|
2780 | * @param[out] pDst points to the output vector |
---|
2781 | * @param[in] blockSize number of samples in the vector |
---|
2782 | */ |
---|
2783 | void arm_negate_q7( |
---|
2784 | q7_t * pSrc, |
---|
2785 | q7_t * pDst, |
---|
2786 | uint32_t blockSize); |
---|
2787 | |
---|
2788 | |
---|
2789 | /** |
---|
2790 | * @brief Negates the elements of a Q15 vector. |
---|
2791 | * @param[in] pSrc points to the input vector |
---|
2792 | * @param[out] pDst points to the output vector |
---|
2793 | * @param[in] blockSize number of samples in the vector |
---|
2794 | */ |
---|
2795 | void arm_negate_q15( |
---|
2796 | q15_t * pSrc, |
---|
2797 | q15_t * pDst, |
---|
2798 | uint32_t blockSize); |
---|
2799 | |
---|
2800 | |
---|
2801 | /** |
---|
2802 | * @brief Negates the elements of a Q31 vector. |
---|
2803 | * @param[in] pSrc points to the input vector |
---|
2804 | * @param[out] pDst points to the output vector |
---|
2805 | * @param[in] blockSize number of samples in the vector |
---|
2806 | */ |
---|
2807 | void arm_negate_q31( |
---|
2808 | q31_t * pSrc, |
---|
2809 | q31_t * pDst, |
---|
2810 | uint32_t blockSize); |
---|
2811 | |
---|
2812 | |
---|
2813 | /** |
---|
2814 | * @brief Copies the elements of a floating-point vector. |
---|
2815 | * @param[in] pSrc input pointer |
---|
2816 | * @param[out] pDst output pointer |
---|
2817 | * @param[in] blockSize number of samples to process |
---|
2818 | */ |
---|
2819 | void arm_copy_f32( |
---|
2820 | float32_t * pSrc, |
---|
2821 | float32_t * pDst, |
---|
2822 | uint32_t blockSize); |
---|
2823 | |
---|
2824 | |
---|
2825 | /** |
---|
2826 | * @brief Copies the elements of a Q7 vector. |
---|
2827 | * @param[in] pSrc input pointer |
---|
2828 | * @param[out] pDst output pointer |
---|
2829 | * @param[in] blockSize number of samples to process |
---|
2830 | */ |
---|
2831 | void arm_copy_q7( |
---|
2832 | q7_t * pSrc, |
---|
2833 | q7_t * pDst, |
---|
2834 | uint32_t blockSize); |
---|
2835 | |
---|
2836 | |
---|
2837 | /** |
---|
2838 | * @brief Copies the elements of a Q15 vector. |
---|
2839 | * @param[in] pSrc input pointer |
---|
2840 | * @param[out] pDst output pointer |
---|
2841 | * @param[in] blockSize number of samples to process |
---|
2842 | */ |
---|
2843 | void arm_copy_q15( |
---|
2844 | q15_t * pSrc, |
---|
2845 | q15_t * pDst, |
---|
2846 | uint32_t blockSize); |
---|
2847 | |
---|
2848 | |
---|
2849 | /** |
---|
2850 | * @brief Copies the elements of a Q31 vector. |
---|
2851 | * @param[in] pSrc input pointer |
---|
2852 | * @param[out] pDst output pointer |
---|
2853 | * @param[in] blockSize number of samples to process |
---|
2854 | */ |
---|
2855 | void arm_copy_q31( |
---|
2856 | q31_t * pSrc, |
---|
2857 | q31_t * pDst, |
---|
2858 | uint32_t blockSize); |
---|
2859 | |
---|
2860 | |
---|
2861 | /** |
---|
2862 | * @brief Fills a constant value into a floating-point vector. |
---|
2863 | * @param[in] value input value to be filled |
---|
2864 | * @param[out] pDst output pointer |
---|
2865 | * @param[in] blockSize number of samples to process |
---|
2866 | */ |
---|
2867 | void arm_fill_f32( |
---|
2868 | float32_t value, |
---|
2869 | float32_t * pDst, |
---|
2870 | uint32_t blockSize); |
---|
2871 | |
---|
2872 | |
---|
2873 | /** |
---|
2874 | * @brief Fills a constant value into a Q7 vector. |
---|
2875 | * @param[in] value input value to be filled |
---|
2876 | * @param[out] pDst output pointer |
---|
2877 | * @param[in] blockSize number of samples to process |
---|
2878 | */ |
---|
2879 | void arm_fill_q7( |
---|
2880 | q7_t value, |
---|
2881 | q7_t * pDst, |
---|
2882 | uint32_t blockSize); |
---|
2883 | |
---|
2884 | |
---|
2885 | /** |
---|
2886 | * @brief Fills a constant value into a Q15 vector. |
---|
2887 | * @param[in] value input value to be filled |
---|
2888 | * @param[out] pDst output pointer |
---|
2889 | * @param[in] blockSize number of samples to process |
---|
2890 | */ |
---|
2891 | void arm_fill_q15( |
---|
2892 | q15_t value, |
---|
2893 | q15_t * pDst, |
---|
2894 | uint32_t blockSize); |
---|
2895 | |
---|
2896 | |
---|
2897 | /** |
---|
2898 | * @brief Fills a constant value into a Q31 vector. |
---|
2899 | * @param[in] value input value to be filled |
---|
2900 | * @param[out] pDst output pointer |
---|
2901 | * @param[in] blockSize number of samples to process |
---|
2902 | */ |
---|
2903 | void arm_fill_q31( |
---|
2904 | q31_t value, |
---|
2905 | q31_t * pDst, |
---|
2906 | uint32_t blockSize); |
---|
2907 | |
---|
2908 | |
---|
2909 | /** |
---|
2910 | * @brief Convolution of floating-point sequences. |
---|
2911 | * @param[in] pSrcA points to the first input sequence. |
---|
2912 | * @param[in] srcALen length of the first input sequence. |
---|
2913 | * @param[in] pSrcB points to the second input sequence. |
---|
2914 | * @param[in] srcBLen length of the second input sequence. |
---|
2915 | * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1. |
---|
2916 | */ |
---|
2917 | void arm_conv_f32( |
---|
2918 | float32_t * pSrcA, |
---|
2919 | uint32_t srcALen, |
---|
2920 | float32_t * pSrcB, |
---|
2921 | uint32_t srcBLen, |
---|
2922 | float32_t * pDst); |
---|
2923 | |
---|
2924 | |
---|
2925 | /** |
---|
2926 | * @brief Convolution of Q15 sequences. |
---|
2927 | * @param[in] pSrcA points to the first input sequence. |
---|
2928 | * @param[in] srcALen length of the first input sequence. |
---|
2929 | * @param[in] pSrcB points to the second input sequence. |
---|
2930 | * @param[in] srcBLen length of the second input sequence. |
---|
2931 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
---|
2932 | * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
---|
2933 | * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). |
---|
2934 | */ |
---|
2935 | void arm_conv_opt_q15( |
---|
2936 | q15_t * pSrcA, |
---|
2937 | uint32_t srcALen, |
---|
2938 | q15_t * pSrcB, |
---|
2939 | uint32_t srcBLen, |
---|
2940 | q15_t * pDst, |
---|
2941 | q15_t * pScratch1, |
---|
2942 | q15_t * pScratch2); |
---|
2943 | |
---|
2944 | |
---|
2945 | /** |
---|
2946 | * @brief Convolution of Q15 sequences. |
---|
2947 | * @param[in] pSrcA points to the first input sequence. |
---|
2948 | * @param[in] srcALen length of the first input sequence. |
---|
2949 | * @param[in] pSrcB points to the second input sequence. |
---|
2950 | * @param[in] srcBLen length of the second input sequence. |
---|
2951 | * @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1. |
---|
2952 | */ |
---|
2953 | void arm_conv_q15( |
---|
2954 | q15_t * pSrcA, |
---|
2955 | uint32_t srcALen, |
---|
2956 | q15_t * pSrcB, |
---|
2957 | uint32_t srcBLen, |
---|
2958 | q15_t * pDst); |
---|
2959 | |
---|
2960 | |
---|
2961 | /** |
---|
2962 | * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 |
---|
2963 | * @param[in] pSrcA points to the first input sequence. |
---|
2964 | * @param[in] srcALen length of the first input sequence. |
---|
2965 | * @param[in] pSrcB points to the second input sequence. |
---|
2966 | * @param[in] srcBLen length of the second input sequence. |
---|
2967 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
---|
2968 | */ |
---|
2969 | void arm_conv_fast_q15( |
---|
2970 | q15_t * pSrcA, |
---|
2971 | uint32_t srcALen, |
---|
2972 | q15_t * pSrcB, |
---|
2973 | uint32_t srcBLen, |
---|
2974 | q15_t * pDst); |
---|
2975 | |
---|
2976 | |
---|
2977 | /** |
---|
2978 | * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 |
---|
2979 | * @param[in] pSrcA points to the first input sequence. |
---|
2980 | * @param[in] srcALen length of the first input sequence. |
---|
2981 | * @param[in] pSrcB points to the second input sequence. |
---|
2982 | * @param[in] srcBLen length of the second input sequence. |
---|
2983 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
---|
2984 | * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
---|
2985 | * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). |
---|
2986 | */ |
---|
2987 | void arm_conv_fast_opt_q15( |
---|
2988 | q15_t * pSrcA, |
---|
2989 | uint32_t srcALen, |
---|
2990 | q15_t * pSrcB, |
---|
2991 | uint32_t srcBLen, |
---|
2992 | q15_t * pDst, |
---|
2993 | q15_t * pScratch1, |
---|
2994 | q15_t * pScratch2); |
---|
2995 | |
---|
2996 | |
---|
2997 | /** |
---|
2998 | * @brief Convolution of Q31 sequences. |
---|
2999 | * @param[in] pSrcA points to the first input sequence. |
---|
3000 | * @param[in] srcALen length of the first input sequence. |
---|
3001 | * @param[in] pSrcB points to the second input sequence. |
---|
3002 | * @param[in] srcBLen length of the second input sequence. |
---|
3003 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
---|
3004 | */ |
---|
3005 | void arm_conv_q31( |
---|
3006 | q31_t * pSrcA, |
---|
3007 | uint32_t srcALen, |
---|
3008 | q31_t * pSrcB, |
---|
3009 | uint32_t srcBLen, |
---|
3010 | q31_t * pDst); |
---|
3011 | |
---|
3012 | |
---|
3013 | /** |
---|
3014 | * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 |
---|
3015 | * @param[in] pSrcA points to the first input sequence. |
---|
3016 | * @param[in] srcALen length of the first input sequence. |
---|
3017 | * @param[in] pSrcB points to the second input sequence. |
---|
3018 | * @param[in] srcBLen length of the second input sequence. |
---|
3019 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
---|
3020 | */ |
---|
3021 | void arm_conv_fast_q31( |
---|
3022 | q31_t * pSrcA, |
---|
3023 | uint32_t srcALen, |
---|
3024 | q31_t * pSrcB, |
---|
3025 | uint32_t srcBLen, |
---|
3026 | q31_t * pDst); |
---|
3027 | |
---|
3028 | |
---|
3029 | /** |
---|
3030 | * @brief Convolution of Q7 sequences. |
---|
3031 | * @param[in] pSrcA points to the first input sequence. |
---|
3032 | * @param[in] srcALen length of the first input sequence. |
---|
3033 | * @param[in] pSrcB points to the second input sequence. |
---|
3034 | * @param[in] srcBLen length of the second input sequence. |
---|
3035 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
---|
3036 | * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
---|
3037 | * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). |
---|
3038 | */ |
---|
3039 | void arm_conv_opt_q7( |
---|
3040 | q7_t * pSrcA, |
---|
3041 | uint32_t srcALen, |
---|
3042 | q7_t * pSrcB, |
---|
3043 | uint32_t srcBLen, |
---|
3044 | q7_t * pDst, |
---|
3045 | q15_t * pScratch1, |
---|
3046 | q15_t * pScratch2); |
---|
3047 | |
---|
3048 | |
---|
3049 | /** |
---|
3050 | * @brief Convolution of Q7 sequences. |
---|
3051 | * @param[in] pSrcA points to the first input sequence. |
---|
3052 | * @param[in] srcALen length of the first input sequence. |
---|
3053 | * @param[in] pSrcB points to the second input sequence. |
---|
3054 | * @param[in] srcBLen length of the second input sequence. |
---|
3055 | * @param[out] pDst points to the block of output data Length srcALen+srcBLen-1. |
---|
3056 | */ |
---|
3057 | void arm_conv_q7( |
---|
3058 | q7_t * pSrcA, |
---|
3059 | uint32_t srcALen, |
---|
3060 | q7_t * pSrcB, |
---|
3061 | uint32_t srcBLen, |
---|
3062 | q7_t * pDst); |
---|
3063 | |
---|
3064 | |
---|
3065 | /** |
---|
3066 | * @brief Partial convolution of floating-point sequences. |
---|
3067 | * @param[in] pSrcA points to the first input sequence. |
---|
3068 | * @param[in] srcALen length of the first input sequence. |
---|
3069 | * @param[in] pSrcB points to the second input sequence. |
---|
3070 | * @param[in] srcBLen length of the second input sequence. |
---|
3071 | * @param[out] pDst points to the block of output data |
---|
3072 | * @param[in] firstIndex is the first output sample to start with. |
---|
3073 | * @param[in] numPoints is the number of output points to be computed. |
---|
3074 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
---|
3075 | */ |
---|
3076 | arm_status arm_conv_partial_f32( |
---|
3077 | float32_t * pSrcA, |
---|
3078 | uint32_t srcALen, |
---|
3079 | float32_t * pSrcB, |
---|
3080 | uint32_t srcBLen, |
---|
3081 | float32_t * pDst, |
---|
3082 | uint32_t firstIndex, |
---|
3083 | uint32_t numPoints); |
---|
3084 | |
---|
3085 | |
---|
3086 | /** |
---|
3087 | * @brief Partial convolution of Q15 sequences. |
---|
3088 | * @param[in] pSrcA points to the first input sequence. |
---|
3089 | * @param[in] srcALen length of the first input sequence. |
---|
3090 | * @param[in] pSrcB points to the second input sequence. |
---|
3091 | * @param[in] srcBLen length of the second input sequence. |
---|
3092 | * @param[out] pDst points to the block of output data |
---|
3093 | * @param[in] firstIndex is the first output sample to start with. |
---|
3094 | * @param[in] numPoints is the number of output points to be computed. |
---|
3095 | * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
---|
3096 | * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). |
---|
3097 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
---|
3098 | */ |
---|
3099 | arm_status arm_conv_partial_opt_q15( |
---|
3100 | q15_t * pSrcA, |
---|
3101 | uint32_t srcALen, |
---|
3102 | q15_t * pSrcB, |
---|
3103 | uint32_t srcBLen, |
---|
3104 | q15_t * pDst, |
---|
3105 | uint32_t firstIndex, |
---|
3106 | uint32_t numPoints, |
---|
3107 | q15_t * pScratch1, |
---|
3108 | q15_t * pScratch2); |
---|
3109 | |
---|
3110 | |
---|
3111 | /** |
---|
3112 | * @brief Partial convolution of Q15 sequences. |
---|
3113 | * @param[in] pSrcA points to the first input sequence. |
---|
3114 | * @param[in] srcALen length of the first input sequence. |
---|
3115 | * @param[in] pSrcB points to the second input sequence. |
---|
3116 | * @param[in] srcBLen length of the second input sequence. |
---|
3117 | * @param[out] pDst points to the block of output data |
---|
3118 | * @param[in] firstIndex is the first output sample to start with. |
---|
3119 | * @param[in] numPoints is the number of output points to be computed. |
---|
3120 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
---|
3121 | */ |
---|
3122 | arm_status arm_conv_partial_q15( |
---|
3123 | q15_t * pSrcA, |
---|
3124 | uint32_t srcALen, |
---|
3125 | q15_t * pSrcB, |
---|
3126 | uint32_t srcBLen, |
---|
3127 | q15_t * pDst, |
---|
3128 | uint32_t firstIndex, |
---|
3129 | uint32_t numPoints); |
---|
3130 | |
---|
3131 | |
---|
3132 | /** |
---|
3133 | * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 |
---|
3134 | * @param[in] pSrcA points to the first input sequence. |
---|
3135 | * @param[in] srcALen length of the first input sequence. |
---|
3136 | * @param[in] pSrcB points to the second input sequence. |
---|
3137 | * @param[in] srcBLen length of the second input sequence. |
---|
3138 | * @param[out] pDst points to the block of output data |
---|
3139 | * @param[in] firstIndex is the first output sample to start with. |
---|
3140 | * @param[in] numPoints is the number of output points to be computed. |
---|
3141 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
---|
3142 | */ |
---|
3143 | arm_status arm_conv_partial_fast_q15( |
---|
3144 | q15_t * pSrcA, |
---|
3145 | uint32_t srcALen, |
---|
3146 | q15_t * pSrcB, |
---|
3147 | uint32_t srcBLen, |
---|
3148 | q15_t * pDst, |
---|
3149 | uint32_t firstIndex, |
---|
3150 | uint32_t numPoints); |
---|
3151 | |
---|
3152 | |
---|
3153 | /** |
---|
3154 | * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4 |
---|
3155 | * @param[in] pSrcA points to the first input sequence. |
---|
3156 | * @param[in] srcALen length of the first input sequence. |
---|
3157 | * @param[in] pSrcB points to the second input sequence. |
---|
3158 | * @param[in] srcBLen length of the second input sequence. |
---|
3159 | * @param[out] pDst points to the block of output data |
---|
3160 | * @param[in] firstIndex is the first output sample to start with. |
---|
3161 | * @param[in] numPoints is the number of output points to be computed. |
---|
3162 | * @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
---|
3163 | * @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen). |
---|
3164 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
---|
3165 | */ |
---|
3166 | arm_status arm_conv_partial_fast_opt_q15( |
---|
3167 | q15_t * pSrcA, |
---|
3168 | uint32_t srcALen, |
---|
3169 | q15_t * pSrcB, |
---|
3170 | uint32_t srcBLen, |
---|
3171 | q15_t * pDst, |
---|
3172 | uint32_t firstIndex, |
---|
3173 | uint32_t numPoints, |
---|
3174 | q15_t * pScratch1, |
---|
3175 | q15_t * pScratch2); |
---|
3176 | |
---|
3177 | |
---|
3178 | /** |
---|
3179 | * @brief Partial convolution of Q31 sequences. |
---|
3180 | * @param[in] pSrcA points to the first input sequence. |
---|
3181 | * @param[in] srcALen length of the first input sequence. |
---|
3182 | * @param[in] pSrcB points to the second input sequence. |
---|
3183 | * @param[in] srcBLen length of the second input sequence. |
---|
3184 | * @param[out] pDst points to the block of output data |
---|
3185 | * @param[in] firstIndex is the first output sample to start with. |
---|
3186 | * @param[in] numPoints is the number of output points to be computed. |
---|
3187 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
---|
3188 | */ |
---|
3189 | arm_status arm_conv_partial_q31( |
---|
3190 | q31_t * pSrcA, |
---|
3191 | uint32_t srcALen, |
---|
3192 | q31_t * pSrcB, |
---|
3193 | uint32_t srcBLen, |
---|
3194 | q31_t * pDst, |
---|
3195 | uint32_t firstIndex, |
---|
3196 | uint32_t numPoints); |
---|
3197 | |
---|
3198 | |
---|
3199 | /** |
---|
3200 | * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 |
---|
3201 | * @param[in] pSrcA points to the first input sequence. |
---|
3202 | * @param[in] srcALen length of the first input sequence. |
---|
3203 | * @param[in] pSrcB points to the second input sequence. |
---|
3204 | * @param[in] srcBLen length of the second input sequence. |
---|
3205 | * @param[out] pDst points to the block of output data |
---|
3206 | * @param[in] firstIndex is the first output sample to start with. |
---|
3207 | * @param[in] numPoints is the number of output points to be computed. |
---|
3208 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
---|
3209 | */ |
---|
3210 | arm_status arm_conv_partial_fast_q31( |
---|
3211 | q31_t * pSrcA, |
---|
3212 | uint32_t srcALen, |
---|
3213 | q31_t * pSrcB, |
---|
3214 | uint32_t srcBLen, |
---|
3215 | q31_t * pDst, |
---|
3216 | uint32_t firstIndex, |
---|
3217 | uint32_t numPoints); |
---|
3218 | |
---|
3219 | |
---|
3220 | /** |
---|
3221 | * @brief Partial convolution of Q7 sequences |
---|
3222 | * @param[in] pSrcA points to the first input sequence. |
---|
3223 | * @param[in] srcALen length of the first input sequence. |
---|
3224 | * @param[in] pSrcB points to the second input sequence. |
---|
3225 | * @param[in] srcBLen length of the second input sequence. |
---|
3226 | * @param[out] pDst points to the block of output data |
---|
3227 | * @param[in] firstIndex is the first output sample to start with. |
---|
3228 | * @param[in] numPoints is the number of output points to be computed. |
---|
3229 | * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
---|
3230 | * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). |
---|
3231 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
---|
3232 | */ |
---|
3233 | arm_status arm_conv_partial_opt_q7( |
---|
3234 | q7_t * pSrcA, |
---|
3235 | uint32_t srcALen, |
---|
3236 | q7_t * pSrcB, |
---|
3237 | uint32_t srcBLen, |
---|
3238 | q7_t * pDst, |
---|
3239 | uint32_t firstIndex, |
---|
3240 | uint32_t numPoints, |
---|
3241 | q15_t * pScratch1, |
---|
3242 | q15_t * pScratch2); |
---|
3243 | |
---|
3244 | |
---|
3245 | /** |
---|
3246 | * @brief Partial convolution of Q7 sequences. |
---|
3247 | * @param[in] pSrcA points to the first input sequence. |
---|
3248 | * @param[in] srcALen length of the first input sequence. |
---|
3249 | * @param[in] pSrcB points to the second input sequence. |
---|
3250 | * @param[in] srcBLen length of the second input sequence. |
---|
3251 | * @param[out] pDst points to the block of output data |
---|
3252 | * @param[in] firstIndex is the first output sample to start with. |
---|
3253 | * @param[in] numPoints is the number of output points to be computed. |
---|
3254 | * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
---|
3255 | */ |
---|
3256 | arm_status arm_conv_partial_q7( |
---|
3257 | q7_t * pSrcA, |
---|
3258 | uint32_t srcALen, |
---|
3259 | q7_t * pSrcB, |
---|
3260 | uint32_t srcBLen, |
---|
3261 | q7_t * pDst, |
---|
3262 | uint32_t firstIndex, |
---|
3263 | uint32_t numPoints); |
---|
3264 | |
---|
3265 | |
---|
3266 | /** |
---|
3267 | * @brief Instance structure for the Q15 FIR decimator. |
---|
3268 | */ |
---|
3269 | typedef struct |
---|
3270 | { |
---|
3271 | uint8_t M; /**< decimation factor. */ |
---|
3272 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
---|
3273 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
---|
3274 | q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
---|
3275 | } arm_fir_decimate_instance_q15; |
---|
3276 | |
---|
3277 | /** |
---|
3278 | * @brief Instance structure for the Q31 FIR decimator. |
---|
3279 | */ |
---|
3280 | typedef struct |
---|
3281 | { |
---|
3282 | uint8_t M; /**< decimation factor. */ |
---|
3283 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
---|
3284 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
---|
3285 | q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
---|
3286 | } arm_fir_decimate_instance_q31; |
---|
3287 | |
---|
3288 | /** |
---|
3289 | * @brief Instance structure for the floating-point FIR decimator. |
---|
3290 | */ |
---|
3291 | typedef struct |
---|
3292 | { |
---|
3293 | uint8_t M; /**< decimation factor. */ |
---|
3294 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
---|
3295 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
---|
3296 | float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
---|
3297 | } arm_fir_decimate_instance_f32; |
---|
3298 | |
---|
3299 | |
---|
3300 | /** |
---|
3301 | * @brief Processing function for the floating-point FIR decimator. |
---|
3302 | * @param[in] S points to an instance of the floating-point FIR decimator structure. |
---|
3303 | * @param[in] pSrc points to the block of input data. |
---|
3304 | * @param[out] pDst points to the block of output data |
---|
3305 | * @param[in] blockSize number of input samples to process per call. |
---|
3306 | */ |
---|
3307 | void arm_fir_decimate_f32( |
---|
3308 | const arm_fir_decimate_instance_f32 * S, |
---|
3309 | float32_t * pSrc, |
---|
3310 | float32_t * pDst, |
---|
3311 | uint32_t blockSize); |
---|
3312 | |
---|
3313 | |
---|
3314 | /** |
---|
3315 | * @brief Initialization function for the floating-point FIR decimator. |
---|
3316 | * @param[in,out] S points to an instance of the floating-point FIR decimator structure. |
---|
3317 | * @param[in] numTaps number of coefficients in the filter. |
---|
3318 | * @param[in] M decimation factor. |
---|
3319 | * @param[in] pCoeffs points to the filter coefficients. |
---|
3320 | * @param[in] pState points to the state buffer. |
---|
3321 | * @param[in] blockSize number of input samples to process per call. |
---|
3322 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
---|
3323 | * <code>blockSize</code> is not a multiple of <code>M</code>. |
---|
3324 | */ |
---|
3325 | arm_status arm_fir_decimate_init_f32( |
---|
3326 | arm_fir_decimate_instance_f32 * S, |
---|
3327 | uint16_t numTaps, |
---|
3328 | uint8_t M, |
---|
3329 | float32_t * pCoeffs, |
---|
3330 | float32_t * pState, |
---|
3331 | uint32_t blockSize); |
---|
3332 | |
---|
3333 | |
---|
3334 | /** |
---|
3335 | * @brief Processing function for the Q15 FIR decimator. |
---|
3336 | * @param[in] S points to an instance of the Q15 FIR decimator structure. |
---|
3337 | * @param[in] pSrc points to the block of input data. |
---|
3338 | * @param[out] pDst points to the block of output data |
---|
3339 | * @param[in] blockSize number of input samples to process per call. |
---|
3340 | */ |
---|
3341 | void arm_fir_decimate_q15( |
---|
3342 | const arm_fir_decimate_instance_q15 * S, |
---|
3343 | q15_t * pSrc, |
---|
3344 | q15_t * pDst, |
---|
3345 | uint32_t blockSize); |
---|
3346 | |
---|
3347 | |
---|
3348 | /** |
---|
3349 | * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. |
---|
3350 | * @param[in] S points to an instance of the Q15 FIR decimator structure. |
---|
3351 | * @param[in] pSrc points to the block of input data. |
---|
3352 | * @param[out] pDst points to the block of output data |
---|
3353 | * @param[in] blockSize number of input samples to process per call. |
---|
3354 | */ |
---|
3355 | void arm_fir_decimate_fast_q15( |
---|
3356 | const arm_fir_decimate_instance_q15 * S, |
---|
3357 | q15_t * pSrc, |
---|
3358 | q15_t * pDst, |
---|
3359 | uint32_t blockSize); |
---|
3360 | |
---|
3361 | |
---|
3362 | /** |
---|
3363 | * @brief Initialization function for the Q15 FIR decimator. |
---|
3364 | * @param[in,out] S points to an instance of the Q15 FIR decimator structure. |
---|
3365 | * @param[in] numTaps number of coefficients in the filter. |
---|
3366 | * @param[in] M decimation factor. |
---|
3367 | * @param[in] pCoeffs points to the filter coefficients. |
---|
3368 | * @param[in] pState points to the state buffer. |
---|
3369 | * @param[in] blockSize number of input samples to process per call. |
---|
3370 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
---|
3371 | * <code>blockSize</code> is not a multiple of <code>M</code>. |
---|
3372 | */ |
---|
3373 | arm_status arm_fir_decimate_init_q15( |
---|
3374 | arm_fir_decimate_instance_q15 * S, |
---|
3375 | uint16_t numTaps, |
---|
3376 | uint8_t M, |
---|
3377 | q15_t * pCoeffs, |
---|
3378 | q15_t * pState, |
---|
3379 | uint32_t blockSize); |
---|
3380 | |
---|
3381 | |
---|
3382 | /** |
---|
3383 | * @brief Processing function for the Q31 FIR decimator. |
---|
3384 | * @param[in] S points to an instance of the Q31 FIR decimator structure. |
---|
3385 | * @param[in] pSrc points to the block of input data. |
---|
3386 | * @param[out] pDst points to the block of output data |
---|
3387 | * @param[in] blockSize number of input samples to process per call. |
---|
3388 | */ |
---|
3389 | void arm_fir_decimate_q31( |
---|
3390 | const arm_fir_decimate_instance_q31 * S, |
---|
3391 | q31_t * pSrc, |
---|
3392 | q31_t * pDst, |
---|
3393 | uint32_t blockSize); |
---|
3394 | |
---|
3395 | /** |
---|
3396 | * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. |
---|
3397 | * @param[in] S points to an instance of the Q31 FIR decimator structure. |
---|
3398 | * @param[in] pSrc points to the block of input data. |
---|
3399 | * @param[out] pDst points to the block of output data |
---|
3400 | * @param[in] blockSize number of input samples to process per call. |
---|
3401 | */ |
---|
3402 | void arm_fir_decimate_fast_q31( |
---|
3403 | arm_fir_decimate_instance_q31 * S, |
---|
3404 | q31_t * pSrc, |
---|
3405 | q31_t * pDst, |
---|
3406 | uint32_t blockSize); |
---|
3407 | |
---|
3408 | |
---|
3409 | /** |
---|
3410 | * @brief Initialization function for the Q31 FIR decimator. |
---|
3411 | * @param[in,out] S points to an instance of the Q31 FIR decimator structure. |
---|
3412 | * @param[in] numTaps number of coefficients in the filter. |
---|
3413 | * @param[in] M decimation factor. |
---|
3414 | * @param[in] pCoeffs points to the filter coefficients. |
---|
3415 | * @param[in] pState points to the state buffer. |
---|
3416 | * @param[in] blockSize number of input samples to process per call. |
---|
3417 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
---|
3418 | * <code>blockSize</code> is not a multiple of <code>M</code>. |
---|
3419 | */ |
---|
3420 | arm_status arm_fir_decimate_init_q31( |
---|
3421 | arm_fir_decimate_instance_q31 * S, |
---|
3422 | uint16_t numTaps, |
---|
3423 | uint8_t M, |
---|
3424 | q31_t * pCoeffs, |
---|
3425 | q31_t * pState, |
---|
3426 | uint32_t blockSize); |
---|
3427 | |
---|
3428 | |
---|
3429 | /** |
---|
3430 | * @brief Instance structure for the Q15 FIR interpolator. |
---|
3431 | */ |
---|
3432 | typedef struct |
---|
3433 | { |
---|
3434 | uint8_t L; /**< upsample factor. */ |
---|
3435 | uint16_t phaseLength; /**< length of each polyphase filter component. */ |
---|
3436 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ |
---|
3437 | q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ |
---|
3438 | } arm_fir_interpolate_instance_q15; |
---|
3439 | |
---|
3440 | /** |
---|
3441 | * @brief Instance structure for the Q31 FIR interpolator. |
---|
3442 | */ |
---|
3443 | typedef struct |
---|
3444 | { |
---|
3445 | uint8_t L; /**< upsample factor. */ |
---|
3446 | uint16_t phaseLength; /**< length of each polyphase filter component. */ |
---|
3447 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ |
---|
3448 | q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */ |
---|
3449 | } arm_fir_interpolate_instance_q31; |
---|
3450 | |
---|
3451 | /** |
---|
3452 | * @brief Instance structure for the floating-point FIR interpolator. |
---|
3453 | */ |
---|
3454 | typedef struct |
---|
3455 | { |
---|
3456 | uint8_t L; /**< upsample factor. */ |
---|
3457 | uint16_t phaseLength; /**< length of each polyphase filter component. */ |
---|
3458 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */ |
---|
3459 | float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */ |
---|
3460 | } arm_fir_interpolate_instance_f32; |
---|
3461 | |
---|
3462 | |
---|
3463 | /** |
---|
3464 | * @brief Processing function for the Q15 FIR interpolator. |
---|
3465 | * @param[in] S points to an instance of the Q15 FIR interpolator structure. |
---|
3466 | * @param[in] pSrc points to the block of input data. |
---|
3467 | * @param[out] pDst points to the block of output data. |
---|
3468 | * @param[in] blockSize number of input samples to process per call. |
---|
3469 | */ |
---|
3470 | void arm_fir_interpolate_q15( |
---|
3471 | const arm_fir_interpolate_instance_q15 * S, |
---|
3472 | q15_t * pSrc, |
---|
3473 | q15_t * pDst, |
---|
3474 | uint32_t blockSize); |
---|
3475 | |
---|
3476 | |
---|
3477 | /** |
---|
3478 | * @brief Initialization function for the Q15 FIR interpolator. |
---|
3479 | * @param[in,out] S points to an instance of the Q15 FIR interpolator structure. |
---|
3480 | * @param[in] L upsample factor. |
---|
3481 | * @param[in] numTaps number of filter coefficients in the filter. |
---|
3482 | * @param[in] pCoeffs points to the filter coefficient buffer. |
---|
3483 | * @param[in] pState points to the state buffer. |
---|
3484 | * @param[in] blockSize number of input samples to process per call. |
---|
3485 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
---|
3486 | * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. |
---|
3487 | */ |
---|
3488 | arm_status arm_fir_interpolate_init_q15( |
---|
3489 | arm_fir_interpolate_instance_q15 * S, |
---|
3490 | uint8_t L, |
---|
3491 | uint16_t numTaps, |
---|
3492 | q15_t * pCoeffs, |
---|
3493 | q15_t * pState, |
---|
3494 | uint32_t blockSize); |
---|
3495 | |
---|
3496 | |
---|
3497 | /** |
---|
3498 | * @brief Processing function for the Q31 FIR interpolator. |
---|
3499 | * @param[in] S points to an instance of the Q15 FIR interpolator structure. |
---|
3500 | * @param[in] pSrc points to the block of input data. |
---|
3501 | * @param[out] pDst points to the block of output data. |
---|
3502 | * @param[in] blockSize number of input samples to process per call. |
---|
3503 | */ |
---|
3504 | void arm_fir_interpolate_q31( |
---|
3505 | const arm_fir_interpolate_instance_q31 * S, |
---|
3506 | q31_t * pSrc, |
---|
3507 | q31_t * pDst, |
---|
3508 | uint32_t blockSize); |
---|
3509 | |
---|
3510 | |
---|
3511 | /** |
---|
3512 | * @brief Initialization function for the Q31 FIR interpolator. |
---|
3513 | * @param[in,out] S points to an instance of the Q31 FIR interpolator structure. |
---|
3514 | * @param[in] L upsample factor. |
---|
3515 | * @param[in] numTaps number of filter coefficients in the filter. |
---|
3516 | * @param[in] pCoeffs points to the filter coefficient buffer. |
---|
3517 | * @param[in] pState points to the state buffer. |
---|
3518 | * @param[in] blockSize number of input samples to process per call. |
---|
3519 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
---|
3520 | * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. |
---|
3521 | */ |
---|
3522 | arm_status arm_fir_interpolate_init_q31( |
---|
3523 | arm_fir_interpolate_instance_q31 * S, |
---|
3524 | uint8_t L, |
---|
3525 | uint16_t numTaps, |
---|
3526 | q31_t * pCoeffs, |
---|
3527 | q31_t * pState, |
---|
3528 | uint32_t blockSize); |
---|
3529 | |
---|
3530 | |
---|
3531 | /** |
---|
3532 | * @brief Processing function for the floating-point FIR interpolator. |
---|
3533 | * @param[in] S points to an instance of the floating-point FIR interpolator structure. |
---|
3534 | * @param[in] pSrc points to the block of input data. |
---|
3535 | * @param[out] pDst points to the block of output data. |
---|
3536 | * @param[in] blockSize number of input samples to process per call. |
---|
3537 | */ |
---|
3538 | void arm_fir_interpolate_f32( |
---|
3539 | const arm_fir_interpolate_instance_f32 * S, |
---|
3540 | float32_t * pSrc, |
---|
3541 | float32_t * pDst, |
---|
3542 | uint32_t blockSize); |
---|
3543 | |
---|
3544 | |
---|
3545 | /** |
---|
3546 | * @brief Initialization function for the floating-point FIR interpolator. |
---|
3547 | * @param[in,out] S points to an instance of the floating-point FIR interpolator structure. |
---|
3548 | * @param[in] L upsample factor. |
---|
3549 | * @param[in] numTaps number of filter coefficients in the filter. |
---|
3550 | * @param[in] pCoeffs points to the filter coefficient buffer. |
---|
3551 | * @param[in] pState points to the state buffer. |
---|
3552 | * @param[in] blockSize number of input samples to process per call. |
---|
3553 | * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if |
---|
3554 | * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>. |
---|
3555 | */ |
---|
3556 | arm_status arm_fir_interpolate_init_f32( |
---|
3557 | arm_fir_interpolate_instance_f32 * S, |
---|
3558 | uint8_t L, |
---|
3559 | uint16_t numTaps, |
---|
3560 | float32_t * pCoeffs, |
---|
3561 | float32_t * pState, |
---|
3562 | uint32_t blockSize); |
---|
3563 | |
---|
3564 | |
---|
3565 | /** |
---|
3566 | * @brief Instance structure for the high precision Q31 Biquad cascade filter. |
---|
3567 | */ |
---|
3568 | typedef struct |
---|
3569 | { |
---|
3570 | uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
---|
3571 | q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ |
---|
3572 | q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ |
---|
3573 | uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */ |
---|
3574 | } arm_biquad_cas_df1_32x64_ins_q31; |
---|
3575 | |
---|
3576 | |
---|
3577 | /** |
---|
3578 | * @param[in] S points to an instance of the high precision Q31 Biquad cascade filter structure. |
---|
3579 | * @param[in] pSrc points to the block of input data. |
---|
3580 | * @param[out] pDst points to the block of output data |
---|
3581 | * @param[in] blockSize number of samples to process. |
---|
3582 | */ |
---|
3583 | void arm_biquad_cas_df1_32x64_q31( |
---|
3584 | const arm_biquad_cas_df1_32x64_ins_q31 * S, |
---|
3585 | q31_t * pSrc, |
---|
3586 | q31_t * pDst, |
---|
3587 | uint32_t blockSize); |
---|
3588 | |
---|
3589 | |
---|
3590 | /** |
---|
3591 | * @param[in,out] S points to an instance of the high precision Q31 Biquad cascade filter structure. |
---|
3592 | * @param[in] numStages number of 2nd order stages in the filter. |
---|
3593 | * @param[in] pCoeffs points to the filter coefficients. |
---|
3594 | * @param[in] pState points to the state buffer. |
---|
3595 | * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format |
---|
3596 | */ |
---|
3597 | void arm_biquad_cas_df1_32x64_init_q31( |
---|
3598 | arm_biquad_cas_df1_32x64_ins_q31 * S, |
---|
3599 | uint8_t numStages, |
---|
3600 | q31_t * pCoeffs, |
---|
3601 | q63_t * pState, |
---|
3602 | uint8_t postShift); |
---|
3603 | |
---|
3604 | |
---|
3605 | /** |
---|
3606 | * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. |
---|
3607 | */ |
---|
3608 | typedef struct |
---|
3609 | { |
---|
3610 | uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
---|
3611 | float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */ |
---|
3612 | float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ |
---|
3613 | } arm_biquad_cascade_df2T_instance_f32; |
---|
3614 | |
---|
3615 | /** |
---|
3616 | * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. |
---|
3617 | */ |
---|
3618 | typedef struct |
---|
3619 | { |
---|
3620 | uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
---|
3621 | float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */ |
---|
3622 | float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ |
---|
3623 | } arm_biquad_cascade_stereo_df2T_instance_f32; |
---|
3624 | |
---|
3625 | /** |
---|
3626 | * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter. |
---|
3627 | */ |
---|
3628 | typedef struct |
---|
3629 | { |
---|
3630 | uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */ |
---|
3631 | float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */ |
---|
3632 | float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */ |
---|
3633 | } arm_biquad_cascade_df2T_instance_f64; |
---|
3634 | |
---|
3635 | |
---|
3636 | /** |
---|
3637 | * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. |
---|
3638 | * @param[in] S points to an instance of the filter data structure. |
---|
3639 | * @param[in] pSrc points to the block of input data. |
---|
3640 | * @param[out] pDst points to the block of output data |
---|
3641 | * @param[in] blockSize number of samples to process. |
---|
3642 | */ |
---|
3643 | void arm_biquad_cascade_df2T_f32( |
---|
3644 | const arm_biquad_cascade_df2T_instance_f32 * S, |
---|
3645 | float32_t * pSrc, |
---|
3646 | float32_t * pDst, |
---|
3647 | uint32_t blockSize); |
---|
3648 | |
---|
3649 | |
---|
3650 | /** |
---|
3651 | * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels |
---|
3652 | * @param[in] S points to an instance of the filter data structure. |
---|
3653 | * @param[in] pSrc points to the block of input data. |
---|
3654 | * @param[out] pDst points to the block of output data |
---|
3655 | * @param[in] blockSize number of samples to process. |
---|
3656 | */ |
---|
3657 | void arm_biquad_cascade_stereo_df2T_f32( |
---|
3658 | const arm_biquad_cascade_stereo_df2T_instance_f32 * S, |
---|
3659 | float32_t * pSrc, |
---|
3660 | float32_t * pDst, |
---|
3661 | uint32_t blockSize); |
---|
3662 | |
---|
3663 | |
---|
3664 | /** |
---|
3665 | * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. |
---|
3666 | * @param[in] S points to an instance of the filter data structure. |
---|
3667 | * @param[in] pSrc points to the block of input data. |
---|
3668 | * @param[out] pDst points to the block of output data |
---|
3669 | * @param[in] blockSize number of samples to process. |
---|
3670 | */ |
---|
3671 | void arm_biquad_cascade_df2T_f64( |
---|
3672 | const arm_biquad_cascade_df2T_instance_f64 * S, |
---|
3673 | float64_t * pSrc, |
---|
3674 | float64_t * pDst, |
---|
3675 | uint32_t blockSize); |
---|
3676 | |
---|
3677 | |
---|
3678 | /** |
---|
3679 | * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. |
---|
3680 | * @param[in,out] S points to an instance of the filter data structure. |
---|
3681 | * @param[in] numStages number of 2nd order stages in the filter. |
---|
3682 | * @param[in] pCoeffs points to the filter coefficients. |
---|
3683 | * @param[in] pState points to the state buffer. |
---|
3684 | */ |
---|
3685 | void arm_biquad_cascade_df2T_init_f32( |
---|
3686 | arm_biquad_cascade_df2T_instance_f32 * S, |
---|
3687 | uint8_t numStages, |
---|
3688 | float32_t * pCoeffs, |
---|
3689 | float32_t * pState); |
---|
3690 | |
---|
3691 | |
---|
3692 | /** |
---|
3693 | * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. |
---|
3694 | * @param[in,out] S points to an instance of the filter data structure. |
---|
3695 | * @param[in] numStages number of 2nd order stages in the filter. |
---|
3696 | * @param[in] pCoeffs points to the filter coefficients. |
---|
3697 | * @param[in] pState points to the state buffer. |
---|
3698 | */ |
---|
3699 | void arm_biquad_cascade_stereo_df2T_init_f32( |
---|
3700 | arm_biquad_cascade_stereo_df2T_instance_f32 * S, |
---|
3701 | uint8_t numStages, |
---|
3702 | float32_t * pCoeffs, |
---|
3703 | float32_t * pState); |
---|
3704 | |
---|
3705 | |
---|
3706 | /** |
---|
3707 | * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. |
---|
3708 | * @param[in,out] S points to an instance of the filter data structure. |
---|
3709 | * @param[in] numStages number of 2nd order stages in the filter. |
---|
3710 | * @param[in] pCoeffs points to the filter coefficients. |
---|
3711 | * @param[in] pState points to the state buffer. |
---|
3712 | */ |
---|
3713 | void arm_biquad_cascade_df2T_init_f64( |
---|
3714 | arm_biquad_cascade_df2T_instance_f64 * S, |
---|
3715 | uint8_t numStages, |
---|
3716 | float64_t * pCoeffs, |
---|
3717 | float64_t * pState); |
---|
3718 | |
---|
3719 | |
---|
3720 | /** |
---|
3721 | * @brief Instance structure for the Q15 FIR lattice filter. |
---|
3722 | */ |
---|
3723 | typedef struct |
---|
3724 | { |
---|
3725 | uint16_t numStages; /**< number of filter stages. */ |
---|
3726 | q15_t *pState; /**< points to the state variable array. The array is of length numStages. */ |
---|
3727 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ |
---|
3728 | } arm_fir_lattice_instance_q15; |
---|
3729 | |
---|
3730 | /** |
---|
3731 | * @brief Instance structure for the Q31 FIR lattice filter. |
---|
3732 | */ |
---|
3733 | typedef struct |
---|
3734 | { |
---|
3735 | uint16_t numStages; /**< number of filter stages. */ |
---|
3736 | q31_t *pState; /**< points to the state variable array. The array is of length numStages. */ |
---|
3737 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ |
---|
3738 | } arm_fir_lattice_instance_q31; |
---|
3739 | |
---|
3740 | /** |
---|
3741 | * @brief Instance structure for the floating-point FIR lattice filter. |
---|
3742 | */ |
---|
3743 | typedef struct |
---|
3744 | { |
---|
3745 | uint16_t numStages; /**< number of filter stages. */ |
---|
3746 | float32_t *pState; /**< points to the state variable array. The array is of length numStages. */ |
---|
3747 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */ |
---|
3748 | } arm_fir_lattice_instance_f32; |
---|
3749 | |
---|
3750 | |
---|
3751 | /** |
---|
3752 | * @brief Initialization function for the Q15 FIR lattice filter. |
---|
3753 | * @param[in] S points to an instance of the Q15 FIR lattice structure. |
---|
3754 | * @param[in] numStages number of filter stages. |
---|
3755 | * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. |
---|
3756 | * @param[in] pState points to the state buffer. The array is of length numStages. |
---|
3757 | */ |
---|
3758 | void arm_fir_lattice_init_q15( |
---|
3759 | arm_fir_lattice_instance_q15 * S, |
---|
3760 | uint16_t numStages, |
---|
3761 | q15_t * pCoeffs, |
---|
3762 | q15_t * pState); |
---|
3763 | |
---|
3764 | |
---|
3765 | /** |
---|
3766 | * @brief Processing function for the Q15 FIR lattice filter. |
---|
3767 | * @param[in] S points to an instance of the Q15 FIR lattice structure. |
---|
3768 | * @param[in] pSrc points to the block of input data. |
---|
3769 | * @param[out] pDst points to the block of output data. |
---|
3770 | * @param[in] blockSize number of samples to process. |
---|
3771 | */ |
---|
3772 | void arm_fir_lattice_q15( |
---|
3773 | const arm_fir_lattice_instance_q15 * S, |
---|
3774 | q15_t * pSrc, |
---|
3775 | q15_t * pDst, |
---|
3776 | uint32_t blockSize); |
---|
3777 | |
---|
3778 | |
---|
3779 | /** |
---|
3780 | * @brief Initialization function for the Q31 FIR lattice filter. |
---|
3781 | * @param[in] S points to an instance of the Q31 FIR lattice structure. |
---|
3782 | * @param[in] numStages number of filter stages. |
---|
3783 | * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. |
---|
3784 | * @param[in] pState points to the state buffer. The array is of length numStages. |
---|
3785 | */ |
---|
3786 | void arm_fir_lattice_init_q31( |
---|
3787 | arm_fir_lattice_instance_q31 * S, |
---|
3788 | uint16_t numStages, |
---|
3789 | q31_t * pCoeffs, |
---|
3790 | q31_t * pState); |
---|
3791 | |
---|
3792 | |
---|
3793 | /** |
---|
3794 | * @brief Processing function for the Q31 FIR lattice filter. |
---|
3795 | * @param[in] S points to an instance of the Q31 FIR lattice structure. |
---|
3796 | * @param[in] pSrc points to the block of input data. |
---|
3797 | * @param[out] pDst points to the block of output data |
---|
3798 | * @param[in] blockSize number of samples to process. |
---|
3799 | */ |
---|
3800 | void arm_fir_lattice_q31( |
---|
3801 | const arm_fir_lattice_instance_q31 * S, |
---|
3802 | q31_t * pSrc, |
---|
3803 | q31_t * pDst, |
---|
3804 | uint32_t blockSize); |
---|
3805 | |
---|
3806 | |
---|
3807 | /** |
---|
3808 | * @brief Initialization function for the floating-point FIR lattice filter. |
---|
3809 | * @param[in] S points to an instance of the floating-point FIR lattice structure. |
---|
3810 | * @param[in] numStages number of filter stages. |
---|
3811 | * @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages. |
---|
3812 | * @param[in] pState points to the state buffer. The array is of length numStages. |
---|
3813 | */ |
---|
3814 | void arm_fir_lattice_init_f32( |
---|
3815 | arm_fir_lattice_instance_f32 * S, |
---|
3816 | uint16_t numStages, |
---|
3817 | float32_t * pCoeffs, |
---|
3818 | float32_t * pState); |
---|
3819 | |
---|
3820 | |
---|
3821 | /** |
---|
3822 | * @brief Processing function for the floating-point FIR lattice filter. |
---|
3823 | * @param[in] S points to an instance of the floating-point FIR lattice structure. |
---|
3824 | * @param[in] pSrc points to the block of input data. |
---|
3825 | * @param[out] pDst points to the block of output data |
---|
3826 | * @param[in] blockSize number of samples to process. |
---|
3827 | */ |
---|
3828 | void arm_fir_lattice_f32( |
---|
3829 | const arm_fir_lattice_instance_f32 * S, |
---|
3830 | float32_t * pSrc, |
---|
3831 | float32_t * pDst, |
---|
3832 | uint32_t blockSize); |
---|
3833 | |
---|
3834 | |
---|
3835 | /** |
---|
3836 | * @brief Instance structure for the Q15 IIR lattice filter. |
---|
3837 | */ |
---|
3838 | typedef struct |
---|
3839 | { |
---|
3840 | uint16_t numStages; /**< number of stages in the filter. */ |
---|
3841 | q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ |
---|
3842 | q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ |
---|
3843 | q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ |
---|
3844 | } arm_iir_lattice_instance_q15; |
---|
3845 | |
---|
3846 | /** |
---|
3847 | * @brief Instance structure for the Q31 IIR lattice filter. |
---|
3848 | */ |
---|
3849 | typedef struct |
---|
3850 | { |
---|
3851 | uint16_t numStages; /**< number of stages in the filter. */ |
---|
3852 | q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ |
---|
3853 | q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ |
---|
3854 | q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ |
---|
3855 | } arm_iir_lattice_instance_q31; |
---|
3856 | |
---|
3857 | /** |
---|
3858 | * @brief Instance structure for the floating-point IIR lattice filter. |
---|
3859 | */ |
---|
3860 | typedef struct |
---|
3861 | { |
---|
3862 | uint16_t numStages; /**< number of stages in the filter. */ |
---|
3863 | float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */ |
---|
3864 | float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */ |
---|
3865 | float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */ |
---|
3866 | } arm_iir_lattice_instance_f32; |
---|
3867 | |
---|
3868 | |
---|
3869 | /** |
---|
3870 | * @brief Processing function for the floating-point IIR lattice filter. |
---|
3871 | * @param[in] S points to an instance of the floating-point IIR lattice structure. |
---|
3872 | * @param[in] pSrc points to the block of input data. |
---|
3873 | * @param[out] pDst points to the block of output data. |
---|
3874 | * @param[in] blockSize number of samples to process. |
---|
3875 | */ |
---|
3876 | void arm_iir_lattice_f32( |
---|
3877 | const arm_iir_lattice_instance_f32 * S, |
---|
3878 | float32_t * pSrc, |
---|
3879 | float32_t * pDst, |
---|
3880 | uint32_t blockSize); |
---|
3881 | |
---|
3882 | |
---|
3883 | /** |
---|
3884 | * @brief Initialization function for the floating-point IIR lattice filter. |
---|
3885 | * @param[in] S points to an instance of the floating-point IIR lattice structure. |
---|
3886 | * @param[in] numStages number of stages in the filter. |
---|
3887 | * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. |
---|
3888 | * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. |
---|
3889 | * @param[in] pState points to the state buffer. The array is of length numStages+blockSize-1. |
---|
3890 | * @param[in] blockSize number of samples to process. |
---|
3891 | */ |
---|
3892 | void arm_iir_lattice_init_f32( |
---|
3893 | arm_iir_lattice_instance_f32 * S, |
---|
3894 | uint16_t numStages, |
---|
3895 | float32_t * pkCoeffs, |
---|
3896 | float32_t * pvCoeffs, |
---|
3897 | float32_t * pState, |
---|
3898 | uint32_t blockSize); |
---|
3899 | |
---|
3900 | |
---|
3901 | /** |
---|
3902 | * @brief Processing function for the Q31 IIR lattice filter. |
---|
3903 | * @param[in] S points to an instance of the Q31 IIR lattice structure. |
---|
3904 | * @param[in] pSrc points to the block of input data. |
---|
3905 | * @param[out] pDst points to the block of output data. |
---|
3906 | * @param[in] blockSize number of samples to process. |
---|
3907 | */ |
---|
3908 | void arm_iir_lattice_q31( |
---|
3909 | const arm_iir_lattice_instance_q31 * S, |
---|
3910 | q31_t * pSrc, |
---|
3911 | q31_t * pDst, |
---|
3912 | uint32_t blockSize); |
---|
3913 | |
---|
3914 | |
---|
3915 | /** |
---|
3916 | * @brief Initialization function for the Q31 IIR lattice filter. |
---|
3917 | * @param[in] S points to an instance of the Q31 IIR lattice structure. |
---|
3918 | * @param[in] numStages number of stages in the filter. |
---|
3919 | * @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages. |
---|
3920 | * @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1. |
---|
3921 | * @param[in] pState points to the state buffer. The array is of length numStages+blockSize. |
---|
3922 | * @param[in] blockSize number of samples to process. |
---|
3923 | */ |
---|
3924 | void arm_iir_lattice_init_q31( |
---|
3925 | arm_iir_lattice_instance_q31 * S, |
---|
3926 | uint16_t numStages, |
---|
3927 | q31_t * pkCoeffs, |
---|
3928 | q31_t * pvCoeffs, |
---|
3929 | q31_t * pState, |
---|
3930 | uint32_t blockSize); |
---|
3931 | |
---|
3932 | |
---|
3933 | /** |
---|
3934 | * @brief Processing function for the Q15 IIR lattice filter. |
---|
3935 | * @param[in] S points to an instance of the Q15 IIR lattice structure. |
---|
3936 | * @param[in] pSrc points to the block of input data. |
---|
3937 | * @param[out] pDst points to the block of output data. |
---|
3938 | * @param[in] blockSize number of samples to process. |
---|
3939 | */ |
---|
3940 | void arm_iir_lattice_q15( |
---|
3941 | const arm_iir_lattice_instance_q15 * S, |
---|
3942 | q15_t * pSrc, |
---|
3943 | q15_t * pDst, |
---|
3944 | uint32_t blockSize); |
---|
3945 | |
---|
3946 | |
---|
3947 | /** |
---|
3948 | * @brief Initialization function for the Q15 IIR lattice filter. |
---|
3949 | * @param[in] S points to an instance of the fixed-point Q15 IIR lattice structure. |
---|
3950 | * @param[in] numStages number of stages in the filter. |
---|
3951 | * @param[in] pkCoeffs points to reflection coefficient buffer. The array is of length numStages. |
---|
3952 | * @param[in] pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1. |
---|
3953 | * @param[in] pState points to state buffer. The array is of length numStages+blockSize. |
---|
3954 | * @param[in] blockSize number of samples to process per call. |
---|
3955 | */ |
---|
3956 | void arm_iir_lattice_init_q15( |
---|
3957 | arm_iir_lattice_instance_q15 * S, |
---|
3958 | uint16_t numStages, |
---|
3959 | q15_t * pkCoeffs, |
---|
3960 | q15_t * pvCoeffs, |
---|
3961 | q15_t * pState, |
---|
3962 | uint32_t blockSize); |
---|
3963 | |
---|
3964 | |
---|
3965 | /** |
---|
3966 | * @brief Instance structure for the floating-point LMS filter. |
---|
3967 | */ |
---|
3968 | typedef struct |
---|
3969 | { |
---|
3970 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
---|
3971 | float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
---|
3972 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
---|
3973 | float32_t mu; /**< step size that controls filter coefficient updates. */ |
---|
3974 | } arm_lms_instance_f32; |
---|
3975 | |
---|
3976 | |
---|
3977 | /** |
---|
3978 | * @brief Processing function for floating-point LMS filter. |
---|
3979 | * @param[in] S points to an instance of the floating-point LMS filter structure. |
---|
3980 | * @param[in] pSrc points to the block of input data. |
---|
3981 | * @param[in] pRef points to the block of reference data. |
---|
3982 | * @param[out] pOut points to the block of output data. |
---|
3983 | * @param[out] pErr points to the block of error data. |
---|
3984 | * @param[in] blockSize number of samples to process. |
---|
3985 | */ |
---|
3986 | void arm_lms_f32( |
---|
3987 | const arm_lms_instance_f32 * S, |
---|
3988 | float32_t * pSrc, |
---|
3989 | float32_t * pRef, |
---|
3990 | float32_t * pOut, |
---|
3991 | float32_t * pErr, |
---|
3992 | uint32_t blockSize); |
---|
3993 | |
---|
3994 | |
---|
3995 | /** |
---|
3996 | * @brief Initialization function for floating-point LMS filter. |
---|
3997 | * @param[in] S points to an instance of the floating-point LMS filter structure. |
---|
3998 | * @param[in] numTaps number of filter coefficients. |
---|
3999 | * @param[in] pCoeffs points to the coefficient buffer. |
---|
4000 | * @param[in] pState points to state buffer. |
---|
4001 | * @param[in] mu step size that controls filter coefficient updates. |
---|
4002 | * @param[in] blockSize number of samples to process. |
---|
4003 | */ |
---|
4004 | void arm_lms_init_f32( |
---|
4005 | arm_lms_instance_f32 * S, |
---|
4006 | uint16_t numTaps, |
---|
4007 | float32_t * pCoeffs, |
---|
4008 | float32_t * pState, |
---|
4009 | float32_t mu, |
---|
4010 | uint32_t blockSize); |
---|
4011 | |
---|
4012 | |
---|
4013 | /** |
---|
4014 | * @brief Instance structure for the Q15 LMS filter. |
---|
4015 | */ |
---|
4016 | typedef struct |
---|
4017 | { |
---|
4018 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
---|
4019 | q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
---|
4020 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
---|
4021 | q15_t mu; /**< step size that controls filter coefficient updates. */ |
---|
4022 | uint32_t postShift; /**< bit shift applied to coefficients. */ |
---|
4023 | } arm_lms_instance_q15; |
---|
4024 | |
---|
4025 | |
---|
4026 | /** |
---|
4027 | * @brief Initialization function for the Q15 LMS filter. |
---|
4028 | * @param[in] S points to an instance of the Q15 LMS filter structure. |
---|
4029 | * @param[in] numTaps number of filter coefficients. |
---|
4030 | * @param[in] pCoeffs points to the coefficient buffer. |
---|
4031 | * @param[in] pState points to the state buffer. |
---|
4032 | * @param[in] mu step size that controls filter coefficient updates. |
---|
4033 | * @param[in] blockSize number of samples to process. |
---|
4034 | * @param[in] postShift bit shift applied to coefficients. |
---|
4035 | */ |
---|
4036 | void arm_lms_init_q15( |
---|
4037 | arm_lms_instance_q15 * S, |
---|
4038 | uint16_t numTaps, |
---|
4039 | q15_t * pCoeffs, |
---|
4040 | q15_t * pState, |
---|
4041 | q15_t mu, |
---|
4042 | uint32_t blockSize, |
---|
4043 | uint32_t postShift); |
---|
4044 | |
---|
4045 | |
---|
4046 | /** |
---|
4047 | * @brief Processing function for Q15 LMS filter. |
---|
4048 | * @param[in] S points to an instance of the Q15 LMS filter structure. |
---|
4049 | * @param[in] pSrc points to the block of input data. |
---|
4050 | * @param[in] pRef points to the block of reference data. |
---|
4051 | * @param[out] pOut points to the block of output data. |
---|
4052 | * @param[out] pErr points to the block of error data. |
---|
4053 | * @param[in] blockSize number of samples to process. |
---|
4054 | */ |
---|
4055 | void arm_lms_q15( |
---|
4056 | const arm_lms_instance_q15 * S, |
---|
4057 | q15_t * pSrc, |
---|
4058 | q15_t * pRef, |
---|
4059 | q15_t * pOut, |
---|
4060 | q15_t * pErr, |
---|
4061 | uint32_t blockSize); |
---|
4062 | |
---|
4063 | |
---|
4064 | /** |
---|
4065 | * @brief Instance structure for the Q31 LMS filter. |
---|
4066 | */ |
---|
4067 | typedef struct |
---|
4068 | { |
---|
4069 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
---|
4070 | q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
---|
4071 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
---|
4072 | q31_t mu; /**< step size that controls filter coefficient updates. */ |
---|
4073 | uint32_t postShift; /**< bit shift applied to coefficients. */ |
---|
4074 | } arm_lms_instance_q31; |
---|
4075 | |
---|
4076 | |
---|
4077 | /** |
---|
4078 | * @brief Processing function for Q31 LMS filter. |
---|
4079 | * @param[in] S points to an instance of the Q15 LMS filter structure. |
---|
4080 | * @param[in] pSrc points to the block of input data. |
---|
4081 | * @param[in] pRef points to the block of reference data. |
---|
4082 | * @param[out] pOut points to the block of output data. |
---|
4083 | * @param[out] pErr points to the block of error data. |
---|
4084 | * @param[in] blockSize number of samples to process. |
---|
4085 | */ |
---|
4086 | void arm_lms_q31( |
---|
4087 | const arm_lms_instance_q31 * S, |
---|
4088 | q31_t * pSrc, |
---|
4089 | q31_t * pRef, |
---|
4090 | q31_t * pOut, |
---|
4091 | q31_t * pErr, |
---|
4092 | uint32_t blockSize); |
---|
4093 | |
---|
4094 | |
---|
4095 | /** |
---|
4096 | * @brief Initialization function for Q31 LMS filter. |
---|
4097 | * @param[in] S points to an instance of the Q31 LMS filter structure. |
---|
4098 | * @param[in] numTaps number of filter coefficients. |
---|
4099 | * @param[in] pCoeffs points to coefficient buffer. |
---|
4100 | * @param[in] pState points to state buffer. |
---|
4101 | * @param[in] mu step size that controls filter coefficient updates. |
---|
4102 | * @param[in] blockSize number of samples to process. |
---|
4103 | * @param[in] postShift bit shift applied to coefficients. |
---|
4104 | */ |
---|
4105 | void arm_lms_init_q31( |
---|
4106 | arm_lms_instance_q31 * S, |
---|
4107 | uint16_t numTaps, |
---|
4108 | q31_t * pCoeffs, |
---|
4109 | q31_t * pState, |
---|
4110 | q31_t mu, |
---|
4111 | uint32_t blockSize, |
---|
4112 | uint32_t postShift); |
---|
4113 | |
---|
4114 | |
---|
4115 | /** |
---|
4116 | * @brief Instance structure for the floating-point normalized LMS filter. |
---|
4117 | */ |
---|
4118 | typedef struct |
---|
4119 | { |
---|
4120 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
---|
4121 | float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
---|
4122 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
---|
4123 | float32_t mu; /**< step size that control filter coefficient updates. */ |
---|
4124 | float32_t energy; /**< saves previous frame energy. */ |
---|
4125 | float32_t x0; /**< saves previous input sample. */ |
---|
4126 | } arm_lms_norm_instance_f32; |
---|
4127 | |
---|
4128 | |
---|
4129 | /** |
---|
4130 | * @brief Processing function for floating-point normalized LMS filter. |
---|
4131 | * @param[in] S points to an instance of the floating-point normalized LMS filter structure. |
---|
4132 | * @param[in] pSrc points to the block of input data. |
---|
4133 | * @param[in] pRef points to the block of reference data. |
---|
4134 | * @param[out] pOut points to the block of output data. |
---|
4135 | * @param[out] pErr points to the block of error data. |
---|
4136 | * @param[in] blockSize number of samples to process. |
---|
4137 | */ |
---|
4138 | void arm_lms_norm_f32( |
---|
4139 | arm_lms_norm_instance_f32 * S, |
---|
4140 | float32_t * pSrc, |
---|
4141 | float32_t * pRef, |
---|
4142 | float32_t * pOut, |
---|
4143 | float32_t * pErr, |
---|
4144 | uint32_t blockSize); |
---|
4145 | |
---|
4146 | |
---|
4147 | /** |
---|
4148 | * @brief Initialization function for floating-point normalized LMS filter. |
---|
4149 | * @param[in] S points to an instance of the floating-point LMS filter structure. |
---|
4150 | * @param[in] numTaps number of filter coefficients. |
---|
4151 | * @param[in] pCoeffs points to coefficient buffer. |
---|
4152 | * @param[in] pState points to state buffer. |
---|
4153 | * @param[in] mu step size that controls filter coefficient updates. |
---|
4154 | * @param[in] blockSize number of samples to process. |
---|
4155 | */ |
---|
4156 | void arm_lms_norm_init_f32( |
---|
4157 | arm_lms_norm_instance_f32 * S, |
---|
4158 | uint16_t numTaps, |
---|
4159 | float32_t * pCoeffs, |
---|
4160 | float32_t * pState, |
---|
4161 | float32_t mu, |
---|
4162 | uint32_t blockSize); |
---|
4163 | |
---|
4164 | |
---|
4165 | /** |
---|
4166 | * @brief Instance structure for the Q31 normalized LMS filter. |
---|
4167 | */ |
---|
4168 | typedef struct |
---|
4169 | { |
---|
4170 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
---|
4171 | q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
---|
4172 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
---|
4173 | q31_t mu; /**< step size that controls filter coefficient updates. */ |
---|
4174 | uint8_t postShift; /**< bit shift applied to coefficients. */ |
---|
4175 | q31_t *recipTable; /**< points to the reciprocal initial value table. */ |
---|
4176 | q31_t energy; /**< saves previous frame energy. */ |
---|
4177 | q31_t x0; /**< saves previous input sample. */ |
---|
4178 | } arm_lms_norm_instance_q31; |
---|
4179 | |
---|
4180 | |
---|
4181 | /** |
---|
4182 | * @brief Processing function for Q31 normalized LMS filter. |
---|
4183 | * @param[in] S points to an instance of the Q31 normalized LMS filter structure. |
---|
4184 | * @param[in] pSrc points to the block of input data. |
---|
4185 | * @param[in] pRef points to the block of reference data. |
---|
4186 | * @param[out] pOut points to the block of output data. |
---|
4187 | * @param[out] pErr points to the block of error data. |
---|
4188 | * @param[in] blockSize number of samples to process. |
---|
4189 | */ |
---|
4190 | void arm_lms_norm_q31( |
---|
4191 | arm_lms_norm_instance_q31 * S, |
---|
4192 | q31_t * pSrc, |
---|
4193 | q31_t * pRef, |
---|
4194 | q31_t * pOut, |
---|
4195 | q31_t * pErr, |
---|
4196 | uint32_t blockSize); |
---|
4197 | |
---|
4198 | |
---|
4199 | /** |
---|
4200 | * @brief Initialization function for Q31 normalized LMS filter. |
---|
4201 | * @param[in] S points to an instance of the Q31 normalized LMS filter structure. |
---|
4202 | * @param[in] numTaps number of filter coefficients. |
---|
4203 | * @param[in] pCoeffs points to coefficient buffer. |
---|
4204 | * @param[in] pState points to state buffer. |
---|
4205 | * @param[in] mu step size that controls filter coefficient updates. |
---|
4206 | * @param[in] blockSize number of samples to process. |
---|
4207 | * @param[in] postShift bit shift applied to coefficients. |
---|
4208 | */ |
---|
4209 | void arm_lms_norm_init_q31( |
---|
4210 | arm_lms_norm_instance_q31 * S, |
---|
4211 | uint16_t numTaps, |
---|
4212 | q31_t * pCoeffs, |
---|
4213 | q31_t * pState, |
---|
4214 | q31_t mu, |
---|
4215 | uint32_t blockSize, |
---|
4216 | uint8_t postShift); |
---|
4217 | |
---|
4218 | |
---|
4219 | /** |
---|
4220 | * @brief Instance structure for the Q15 normalized LMS filter. |
---|
4221 | */ |
---|
4222 | typedef struct |
---|
4223 | { |
---|
4224 | uint16_t numTaps; /**< Number of coefficients in the filter. */ |
---|
4225 | q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */ |
---|
4226 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */ |
---|
4227 | q15_t mu; /**< step size that controls filter coefficient updates. */ |
---|
4228 | uint8_t postShift; /**< bit shift applied to coefficients. */ |
---|
4229 | q15_t *recipTable; /**< Points to the reciprocal initial value table. */ |
---|
4230 | q15_t energy; /**< saves previous frame energy. */ |
---|
4231 | q15_t x0; /**< saves previous input sample. */ |
---|
4232 | } arm_lms_norm_instance_q15; |
---|
4233 | |
---|
4234 | |
---|
4235 | /** |
---|
4236 | * @brief Processing function for Q15 normalized LMS filter. |
---|
4237 | * @param[in] S points to an instance of the Q15 normalized LMS filter structure. |
---|
4238 | * @param[in] pSrc points to the block of input data. |
---|
4239 | * @param[in] pRef points to the block of reference data. |
---|
4240 | * @param[out] pOut points to the block of output data. |
---|
4241 | * @param[out] pErr points to the block of error data. |
---|
4242 | * @param[in] blockSize number of samples to process. |
---|
4243 | */ |
---|
4244 | void arm_lms_norm_q15( |
---|
4245 | arm_lms_norm_instance_q15 * S, |
---|
4246 | q15_t * pSrc, |
---|
4247 | q15_t * pRef, |
---|
4248 | q15_t * pOut, |
---|
4249 | q15_t * pErr, |
---|
4250 | uint32_t blockSize); |
---|
4251 | |
---|
4252 | |
---|
4253 | /** |
---|
4254 | * @brief Initialization function for Q15 normalized LMS filter. |
---|
4255 | * @param[in] S points to an instance of the Q15 normalized LMS filter structure. |
---|
4256 | * @param[in] numTaps number of filter coefficients. |
---|
4257 | * @param[in] pCoeffs points to coefficient buffer. |
---|
4258 | * @param[in] pState points to state buffer. |
---|
4259 | * @param[in] mu step size that controls filter coefficient updates. |
---|
4260 | * @param[in] blockSize number of samples to process. |
---|
4261 | * @param[in] postShift bit shift applied to coefficients. |
---|
4262 | */ |
---|
4263 | void arm_lms_norm_init_q15( |
---|
4264 | arm_lms_norm_instance_q15 * S, |
---|
4265 | uint16_t numTaps, |
---|
4266 | q15_t * pCoeffs, |
---|
4267 | q15_t * pState, |
---|
4268 | q15_t mu, |
---|
4269 | uint32_t blockSize, |
---|
4270 | uint8_t postShift); |
---|
4271 | |
---|
4272 | |
---|
4273 | /** |
---|
4274 | * @brief Correlation of floating-point sequences. |
---|
4275 | * @param[in] pSrcA points to the first input sequence. |
---|
4276 | * @param[in] srcALen length of the first input sequence. |
---|
4277 | * @param[in] pSrcB points to the second input sequence. |
---|
4278 | * @param[in] srcBLen length of the second input sequence. |
---|
4279 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
---|
4280 | */ |
---|
4281 | void arm_correlate_f32( |
---|
4282 | float32_t * pSrcA, |
---|
4283 | uint32_t srcALen, |
---|
4284 | float32_t * pSrcB, |
---|
4285 | uint32_t srcBLen, |
---|
4286 | float32_t * pDst); |
---|
4287 | |
---|
4288 | |
---|
4289 | /** |
---|
4290 | * @brief Correlation of Q15 sequences |
---|
4291 | * @param[in] pSrcA points to the first input sequence. |
---|
4292 | * @param[in] srcALen length of the first input sequence. |
---|
4293 | * @param[in] pSrcB points to the second input sequence. |
---|
4294 | * @param[in] srcBLen length of the second input sequence. |
---|
4295 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
---|
4296 | * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
---|
4297 | */ |
---|
4298 | void arm_correlate_opt_q15( |
---|
4299 | q15_t * pSrcA, |
---|
4300 | uint32_t srcALen, |
---|
4301 | q15_t * pSrcB, |
---|
4302 | uint32_t srcBLen, |
---|
4303 | q15_t * pDst, |
---|
4304 | q15_t * pScratch); |
---|
4305 | |
---|
4306 | |
---|
4307 | /** |
---|
4308 | * @brief Correlation of Q15 sequences. |
---|
4309 | * @param[in] pSrcA points to the first input sequence. |
---|
4310 | * @param[in] srcALen length of the first input sequence. |
---|
4311 | * @param[in] pSrcB points to the second input sequence. |
---|
4312 | * @param[in] srcBLen length of the second input sequence. |
---|
4313 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
---|
4314 | */ |
---|
4315 | |
---|
4316 | void arm_correlate_q15( |
---|
4317 | q15_t * pSrcA, |
---|
4318 | uint32_t srcALen, |
---|
4319 | q15_t * pSrcB, |
---|
4320 | uint32_t srcBLen, |
---|
4321 | q15_t * pDst); |
---|
4322 | |
---|
4323 | |
---|
4324 | /** |
---|
4325 | * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. |
---|
4326 | * @param[in] pSrcA points to the first input sequence. |
---|
4327 | * @param[in] srcALen length of the first input sequence. |
---|
4328 | * @param[in] pSrcB points to the second input sequence. |
---|
4329 | * @param[in] srcBLen length of the second input sequence. |
---|
4330 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
---|
4331 | */ |
---|
4332 | |
---|
4333 | void arm_correlate_fast_q15( |
---|
4334 | q15_t * pSrcA, |
---|
4335 | uint32_t srcALen, |
---|
4336 | q15_t * pSrcB, |
---|
4337 | uint32_t srcBLen, |
---|
4338 | q15_t * pDst); |
---|
4339 | |
---|
4340 | |
---|
4341 | /** |
---|
4342 | * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. |
---|
4343 | * @param[in] pSrcA points to the first input sequence. |
---|
4344 | * @param[in] srcALen length of the first input sequence. |
---|
4345 | * @param[in] pSrcB points to the second input sequence. |
---|
4346 | * @param[in] srcBLen length of the second input sequence. |
---|
4347 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
---|
4348 | * @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
---|
4349 | */ |
---|
4350 | void arm_correlate_fast_opt_q15( |
---|
4351 | q15_t * pSrcA, |
---|
4352 | uint32_t srcALen, |
---|
4353 | q15_t * pSrcB, |
---|
4354 | uint32_t srcBLen, |
---|
4355 | q15_t * pDst, |
---|
4356 | q15_t * pScratch); |
---|
4357 | |
---|
4358 | |
---|
4359 | /** |
---|
4360 | * @brief Correlation of Q31 sequences. |
---|
4361 | * @param[in] pSrcA points to the first input sequence. |
---|
4362 | * @param[in] srcALen length of the first input sequence. |
---|
4363 | * @param[in] pSrcB points to the second input sequence. |
---|
4364 | * @param[in] srcBLen length of the second input sequence. |
---|
4365 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
---|
4366 | */ |
---|
4367 | void arm_correlate_q31( |
---|
4368 | q31_t * pSrcA, |
---|
4369 | uint32_t srcALen, |
---|
4370 | q31_t * pSrcB, |
---|
4371 | uint32_t srcBLen, |
---|
4372 | q31_t * pDst); |
---|
4373 | |
---|
4374 | |
---|
4375 | /** |
---|
4376 | * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4 |
---|
4377 | * @param[in] pSrcA points to the first input sequence. |
---|
4378 | * @param[in] srcALen length of the first input sequence. |
---|
4379 | * @param[in] pSrcB points to the second input sequence. |
---|
4380 | * @param[in] srcBLen length of the second input sequence. |
---|
4381 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
---|
4382 | */ |
---|
4383 | void arm_correlate_fast_q31( |
---|
4384 | q31_t * pSrcA, |
---|
4385 | uint32_t srcALen, |
---|
4386 | q31_t * pSrcB, |
---|
4387 | uint32_t srcBLen, |
---|
4388 | q31_t * pDst); |
---|
4389 | |
---|
4390 | |
---|
4391 | /** |
---|
4392 | * @brief Correlation of Q7 sequences. |
---|
4393 | * @param[in] pSrcA points to the first input sequence. |
---|
4394 | * @param[in] srcALen length of the first input sequence. |
---|
4395 | * @param[in] pSrcB points to the second input sequence. |
---|
4396 | * @param[in] srcBLen length of the second input sequence. |
---|
4397 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
---|
4398 | * @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
---|
4399 | * @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). |
---|
4400 | */ |
---|
4401 | void arm_correlate_opt_q7( |
---|
4402 | q7_t * pSrcA, |
---|
4403 | uint32_t srcALen, |
---|
4404 | q7_t * pSrcB, |
---|
4405 | uint32_t srcBLen, |
---|
4406 | q7_t * pDst, |
---|
4407 | q15_t * pScratch1, |
---|
4408 | q15_t * pScratch2); |
---|
4409 | |
---|
4410 | |
---|
4411 | /** |
---|
4412 | * @brief Correlation of Q7 sequences. |
---|
4413 | * @param[in] pSrcA points to the first input sequence. |
---|
4414 | * @param[in] srcALen length of the first input sequence. |
---|
4415 | * @param[in] pSrcB points to the second input sequence. |
---|
4416 | * @param[in] srcBLen length of the second input sequence. |
---|
4417 | * @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1. |
---|
4418 | */ |
---|
4419 | void arm_correlate_q7( |
---|
4420 | q7_t * pSrcA, |
---|
4421 | uint32_t srcALen, |
---|
4422 | q7_t * pSrcB, |
---|
4423 | uint32_t srcBLen, |
---|
4424 | q7_t * pDst); |
---|
4425 | |
---|
4426 | |
---|
4427 | /** |
---|
4428 | * @brief Instance structure for the floating-point sparse FIR filter. |
---|
4429 | */ |
---|
4430 | typedef struct |
---|
4431 | { |
---|
4432 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
---|
4433 | uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ |
---|
4434 | float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ |
---|
4435 | float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
---|
4436 | uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ |
---|
4437 | int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ |
---|
4438 | } arm_fir_sparse_instance_f32; |
---|
4439 | |
---|
4440 | /** |
---|
4441 | * @brief Instance structure for the Q31 sparse FIR filter. |
---|
4442 | */ |
---|
4443 | typedef struct |
---|
4444 | { |
---|
4445 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
---|
4446 | uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ |
---|
4447 | q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ |
---|
4448 | q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
---|
4449 | uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ |
---|
4450 | int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ |
---|
4451 | } arm_fir_sparse_instance_q31; |
---|
4452 | |
---|
4453 | /** |
---|
4454 | * @brief Instance structure for the Q15 sparse FIR filter. |
---|
4455 | */ |
---|
4456 | typedef struct |
---|
4457 | { |
---|
4458 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
---|
4459 | uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ |
---|
4460 | q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ |
---|
4461 | q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
---|
4462 | uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ |
---|
4463 | int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ |
---|
4464 | } arm_fir_sparse_instance_q15; |
---|
4465 | |
---|
4466 | /** |
---|
4467 | * @brief Instance structure for the Q7 sparse FIR filter. |
---|
4468 | */ |
---|
4469 | typedef struct |
---|
4470 | { |
---|
4471 | uint16_t numTaps; /**< number of coefficients in the filter. */ |
---|
4472 | uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */ |
---|
4473 | q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */ |
---|
4474 | q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/ |
---|
4475 | uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */ |
---|
4476 | int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */ |
---|
4477 | } arm_fir_sparse_instance_q7; |
---|
4478 | |
---|
4479 | |
---|
4480 | /** |
---|
4481 | * @brief Processing function for the floating-point sparse FIR filter. |
---|
4482 | * @param[in] S points to an instance of the floating-point sparse FIR structure. |
---|
4483 | * @param[in] pSrc points to the block of input data. |
---|
4484 | * @param[out] pDst points to the block of output data |
---|
4485 | * @param[in] pScratchIn points to a temporary buffer of size blockSize. |
---|
4486 | * @param[in] blockSize number of input samples to process per call. |
---|
4487 | */ |
---|
4488 | void arm_fir_sparse_f32( |
---|
4489 | arm_fir_sparse_instance_f32 * S, |
---|
4490 | float32_t * pSrc, |
---|
4491 | float32_t * pDst, |
---|
4492 | float32_t * pScratchIn, |
---|
4493 | uint32_t blockSize); |
---|
4494 | |
---|
4495 | |
---|
4496 | /** |
---|
4497 | * @brief Initialization function for the floating-point sparse FIR filter. |
---|
4498 | * @param[in,out] S points to an instance of the floating-point sparse FIR structure. |
---|
4499 | * @param[in] numTaps number of nonzero coefficients in the filter. |
---|
4500 | * @param[in] pCoeffs points to the array of filter coefficients. |
---|
4501 | * @param[in] pState points to the state buffer. |
---|
4502 | * @param[in] pTapDelay points to the array of offset times. |
---|
4503 | * @param[in] maxDelay maximum offset time supported. |
---|
4504 | * @param[in] blockSize number of samples that will be processed per block. |
---|
4505 | */ |
---|
4506 | void arm_fir_sparse_init_f32( |
---|
4507 | arm_fir_sparse_instance_f32 * S, |
---|
4508 | uint16_t numTaps, |
---|
4509 | float32_t * pCoeffs, |
---|
4510 | float32_t * pState, |
---|
4511 | int32_t * pTapDelay, |
---|
4512 | uint16_t maxDelay, |
---|
4513 | uint32_t blockSize); |
---|
4514 | |
---|
4515 | |
---|
4516 | /** |
---|
4517 | * @brief Processing function for the Q31 sparse FIR filter. |
---|
4518 | * @param[in] S points to an instance of the Q31 sparse FIR structure. |
---|
4519 | * @param[in] pSrc points to the block of input data. |
---|
4520 | * @param[out] pDst points to the block of output data |
---|
4521 | * @param[in] pScratchIn points to a temporary buffer of size blockSize. |
---|
4522 | * @param[in] blockSize number of input samples to process per call. |
---|
4523 | */ |
---|
4524 | void arm_fir_sparse_q31( |
---|
4525 | arm_fir_sparse_instance_q31 * S, |
---|
4526 | q31_t * pSrc, |
---|
4527 | q31_t * pDst, |
---|
4528 | q31_t * pScratchIn, |
---|
4529 | uint32_t blockSize); |
---|
4530 | |
---|
4531 | |
---|
4532 | /** |
---|
4533 | * @brief Initialization function for the Q31 sparse FIR filter. |
---|
4534 | * @param[in,out] S points to an instance of the Q31 sparse FIR structure. |
---|
4535 | * @param[in] numTaps number of nonzero coefficients in the filter. |
---|
4536 | * @param[in] pCoeffs points to the array of filter coefficients. |
---|
4537 | * @param[in] pState points to the state buffer. |
---|
4538 | * @param[in] pTapDelay points to the array of offset times. |
---|
4539 | * @param[in] maxDelay maximum offset time supported. |
---|
4540 | * @param[in] blockSize number of samples that will be processed per block. |
---|
4541 | */ |
---|
4542 | void arm_fir_sparse_init_q31( |
---|
4543 | arm_fir_sparse_instance_q31 * S, |
---|
4544 | uint16_t numTaps, |
---|
4545 | q31_t * pCoeffs, |
---|
4546 | q31_t * pState, |
---|
4547 | int32_t * pTapDelay, |
---|
4548 | uint16_t maxDelay, |
---|
4549 | uint32_t blockSize); |
---|
4550 | |
---|
4551 | |
---|
4552 | /** |
---|
4553 | * @brief Processing function for the Q15 sparse FIR filter. |
---|
4554 | * @param[in] S points to an instance of the Q15 sparse FIR structure. |
---|
4555 | * @param[in] pSrc points to the block of input data. |
---|
4556 | * @param[out] pDst points to the block of output data |
---|
4557 | * @param[in] pScratchIn points to a temporary buffer of size blockSize. |
---|
4558 | * @param[in] pScratchOut points to a temporary buffer of size blockSize. |
---|
4559 | * @param[in] blockSize number of input samples to process per call. |
---|
4560 | */ |
---|
4561 | void arm_fir_sparse_q15( |
---|
4562 | arm_fir_sparse_instance_q15 * S, |
---|
4563 | q15_t * pSrc, |
---|
4564 | q15_t * pDst, |
---|
4565 | q15_t * pScratchIn, |
---|
4566 | q31_t * pScratchOut, |
---|
4567 | uint32_t blockSize); |
---|
4568 | |
---|
4569 | |
---|
4570 | /** |
---|
4571 | * @brief Initialization function for the Q15 sparse FIR filter. |
---|
4572 | * @param[in,out] S points to an instance of the Q15 sparse FIR structure. |
---|
4573 | * @param[in] numTaps number of nonzero coefficients in the filter. |
---|
4574 | * @param[in] pCoeffs points to the array of filter coefficients. |
---|
4575 | * @param[in] pState points to the state buffer. |
---|
4576 | * @param[in] pTapDelay points to the array of offset times. |
---|
4577 | * @param[in] maxDelay maximum offset time supported. |
---|
4578 | * @param[in] blockSize number of samples that will be processed per block. |
---|
4579 | */ |
---|
4580 | void arm_fir_sparse_init_q15( |
---|
4581 | arm_fir_sparse_instance_q15 * S, |
---|
4582 | uint16_t numTaps, |
---|
4583 | q15_t * pCoeffs, |
---|
4584 | q15_t * pState, |
---|
4585 | int32_t * pTapDelay, |
---|
4586 | uint16_t maxDelay, |
---|
4587 | uint32_t blockSize); |
---|
4588 | |
---|
4589 | |
---|
4590 | /** |
---|
4591 | * @brief Processing function for the Q7 sparse FIR filter. |
---|
4592 | * @param[in] S points to an instance of the Q7 sparse FIR structure. |
---|
4593 | * @param[in] pSrc points to the block of input data. |
---|
4594 | * @param[out] pDst points to the block of output data |
---|
4595 | * @param[in] pScratchIn points to a temporary buffer of size blockSize. |
---|
4596 | * @param[in] pScratchOut points to a temporary buffer of size blockSize. |
---|
4597 | * @param[in] blockSize number of input samples to process per call. |
---|
4598 | */ |
---|
4599 | void arm_fir_sparse_q7( |
---|
4600 | arm_fir_sparse_instance_q7 * S, |
---|
4601 | q7_t * pSrc, |
---|
4602 | q7_t * pDst, |
---|
4603 | q7_t * pScratchIn, |
---|
4604 | q31_t * pScratchOut, |
---|
4605 | uint32_t blockSize); |
---|
4606 | |
---|
4607 | |
---|
4608 | /** |
---|
4609 | * @brief Initialization function for the Q7 sparse FIR filter. |
---|
4610 | * @param[in,out] S points to an instance of the Q7 sparse FIR structure. |
---|
4611 | * @param[in] numTaps number of nonzero coefficients in the filter. |
---|
4612 | * @param[in] pCoeffs points to the array of filter coefficients. |
---|
4613 | * @param[in] pState points to the state buffer. |
---|
4614 | * @param[in] pTapDelay points to the array of offset times. |
---|
4615 | * @param[in] maxDelay maximum offset time supported. |
---|
4616 | * @param[in] blockSize number of samples that will be processed per block. |
---|
4617 | */ |
---|
4618 | void arm_fir_sparse_init_q7( |
---|
4619 | arm_fir_sparse_instance_q7 * S, |
---|
4620 | uint16_t numTaps, |
---|
4621 | q7_t * pCoeffs, |
---|
4622 | q7_t * pState, |
---|
4623 | int32_t * pTapDelay, |
---|
4624 | uint16_t maxDelay, |
---|
4625 | uint32_t blockSize); |
---|
4626 | |
---|
4627 | |
---|
4628 | /** |
---|
4629 | * @brief Floating-point sin_cos function. |
---|
4630 | * @param[in] theta input value in degrees |
---|
4631 | * @param[out] pSinVal points to the processed sine output. |
---|
4632 | * @param[out] pCosVal points to the processed cos output. |
---|
4633 | */ |
---|
4634 | void arm_sin_cos_f32( |
---|
4635 | float32_t theta, |
---|
4636 | float32_t * pSinVal, |
---|
4637 | float32_t * pCosVal); |
---|
4638 | |
---|
4639 | |
---|
4640 | /** |
---|
4641 | * @brief Q31 sin_cos function. |
---|
4642 | * @param[in] theta scaled input value in degrees |
---|
4643 | * @param[out] pSinVal points to the processed sine output. |
---|
4644 | * @param[out] pCosVal points to the processed cosine output. |
---|
4645 | */ |
---|
4646 | void arm_sin_cos_q31( |
---|
4647 | q31_t theta, |
---|
4648 | q31_t * pSinVal, |
---|
4649 | q31_t * pCosVal); |
---|
4650 | |
---|
4651 | |
---|
4652 | /** |
---|
4653 | * @brief Floating-point complex conjugate. |
---|
4654 | * @param[in] pSrc points to the input vector |
---|
4655 | * @param[out] pDst points to the output vector |
---|
4656 | * @param[in] numSamples number of complex samples in each vector |
---|
4657 | */ |
---|
4658 | void arm_cmplx_conj_f32( |
---|
4659 | float32_t * pSrc, |
---|
4660 | float32_t * pDst, |
---|
4661 | uint32_t numSamples); |
---|
4662 | |
---|
4663 | /** |
---|
4664 | * @brief Q31 complex conjugate. |
---|
4665 | * @param[in] pSrc points to the input vector |
---|
4666 | * @param[out] pDst points to the output vector |
---|
4667 | * @param[in] numSamples number of complex samples in each vector |
---|
4668 | */ |
---|
4669 | void arm_cmplx_conj_q31( |
---|
4670 | q31_t * pSrc, |
---|
4671 | q31_t * pDst, |
---|
4672 | uint32_t numSamples); |
---|
4673 | |
---|
4674 | |
---|
4675 | /** |
---|
4676 | * @brief Q15 complex conjugate. |
---|
4677 | * @param[in] pSrc points to the input vector |
---|
4678 | * @param[out] pDst points to the output vector |
---|
4679 | * @param[in] numSamples number of complex samples in each vector |
---|
4680 | */ |
---|
4681 | void arm_cmplx_conj_q15( |
---|
4682 | q15_t * pSrc, |
---|
4683 | q15_t * pDst, |
---|
4684 | uint32_t numSamples); |
---|
4685 | |
---|
4686 | |
---|
4687 | /** |
---|
4688 | * @brief Floating-point complex magnitude squared |
---|
4689 | * @param[in] pSrc points to the complex input vector |
---|
4690 | * @param[out] pDst points to the real output vector |
---|
4691 | * @param[in] numSamples number of complex samples in the input vector |
---|
4692 | */ |
---|
4693 | void arm_cmplx_mag_squared_f32( |
---|
4694 | float32_t * pSrc, |
---|
4695 | float32_t * pDst, |
---|
4696 | uint32_t numSamples); |
---|
4697 | |
---|
4698 | |
---|
4699 | /** |
---|
4700 | * @brief Q31 complex magnitude squared |
---|
4701 | * @param[in] pSrc points to the complex input vector |
---|
4702 | * @param[out] pDst points to the real output vector |
---|
4703 | * @param[in] numSamples number of complex samples in the input vector |
---|
4704 | */ |
---|
4705 | void arm_cmplx_mag_squared_q31( |
---|
4706 | q31_t * pSrc, |
---|
4707 | q31_t * pDst, |
---|
4708 | uint32_t numSamples); |
---|
4709 | |
---|
4710 | |
---|
4711 | /** |
---|
4712 | * @brief Q15 complex magnitude squared |
---|
4713 | * @param[in] pSrc points to the complex input vector |
---|
4714 | * @param[out] pDst points to the real output vector |
---|
4715 | * @param[in] numSamples number of complex samples in the input vector |
---|
4716 | */ |
---|
4717 | void arm_cmplx_mag_squared_q15( |
---|
4718 | q15_t * pSrc, |
---|
4719 | q15_t * pDst, |
---|
4720 | uint32_t numSamples); |
---|
4721 | |
---|
4722 | |
---|
4723 | /** |
---|
4724 | * @ingroup groupController |
---|
4725 | */ |
---|
4726 | |
---|
4727 | /** |
---|
4728 | * @defgroup PID PID Motor Control |
---|
4729 | * |
---|
4730 | * A Proportional Integral Derivative (PID) controller is a generic feedback control |
---|
4731 | * loop mechanism widely used in industrial control systems. |
---|
4732 | * A PID controller is the most commonly used type of feedback controller. |
---|
4733 | * |
---|
4734 | * This set of functions implements (PID) controllers |
---|
4735 | * for Q15, Q31, and floating-point data types. The functions operate on a single sample |
---|
4736 | * of data and each call to the function returns a single processed value. |
---|
4737 | * <code>S</code> points to an instance of the PID control data structure. <code>in</code> |
---|
4738 | * is the input sample value. The functions return the output value. |
---|
4739 | * |
---|
4740 | * \par Algorithm: |
---|
4741 | * <pre> |
---|
4742 | * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] |
---|
4743 | * A0 = Kp + Ki + Kd |
---|
4744 | * A1 = (-Kp ) - (2 * Kd ) |
---|
4745 | * A2 = Kd </pre> |
---|
4746 | * |
---|
4747 | * \par |
---|
4748 | * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant |
---|
4749 | * |
---|
4750 | * \par |
---|
4751 | * \image html PID.gif "Proportional Integral Derivative Controller" |
---|
4752 | * |
---|
4753 | * \par |
---|
4754 | * The PID controller calculates an "error" value as the difference between |
---|
4755 | * the measured output and the reference input. |
---|
4756 | * The controller attempts to minimize the error by adjusting the process control inputs. |
---|
4757 | * The proportional value determines the reaction to the current error, |
---|
4758 | * the integral value determines the reaction based on the sum of recent errors, |
---|
4759 | * and the derivative value determines the reaction based on the rate at which the error has been changing. |
---|
4760 | * |
---|
4761 | * \par Instance Structure |
---|
4762 | * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure. |
---|
4763 | * A separate instance structure must be defined for each PID Controller. |
---|
4764 | * There are separate instance structure declarations for each of the 3 supported data types. |
---|
4765 | * |
---|
4766 | * \par Reset Functions |
---|
4767 | * There is also an associated reset function for each data type which clears the state array. |
---|
4768 | * |
---|
4769 | * \par Initialization Functions |
---|
4770 | * There is also an associated initialization function for each data type. |
---|
4771 | * The initialization function performs the following operations: |
---|
4772 | * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains. |
---|
4773 | * - Zeros out the values in the state buffer. |
---|
4774 | * |
---|
4775 | * \par |
---|
4776 | * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function. |
---|
4777 | * |
---|
4778 | * \par Fixed-Point Behavior |
---|
4779 | * Care must be taken when using the fixed-point versions of the PID Controller functions. |
---|
4780 | * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered. |
---|
4781 | * Refer to the function specific documentation below for usage guidelines. |
---|
4782 | */ |
---|
4783 | |
---|
4784 | /** |
---|
4785 | * @addtogroup PID |
---|
4786 | * @{ |
---|
4787 | */ |
---|
4788 | |
---|
4789 | /** |
---|
4790 | * @brief Process function for the floating-point PID Control. |
---|
4791 | * @param[in,out] S is an instance of the floating-point PID Control structure |
---|
4792 | * @param[in] in input sample to process |
---|
4793 | * @return out processed output sample. |
---|
4794 | */ |
---|
4795 | static __INLINE float32_t arm_pid_f32( |
---|
4796 | arm_pid_instance_f32 * S, |
---|
4797 | float32_t in) |
---|
4798 | { |
---|
4799 | float32_t out; |
---|
4800 | |
---|
4801 | /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */ |
---|
4802 | out = (S->A0 * in) + |
---|
4803 | (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]); |
---|
4804 | |
---|
4805 | /* Update state */ |
---|
4806 | S->state[1] = S->state[0]; |
---|
4807 | S->state[0] = in; |
---|
4808 | S->state[2] = out; |
---|
4809 | |
---|
4810 | /* return to application */ |
---|
4811 | return (out); |
---|
4812 | |
---|
4813 | } |
---|
4814 | |
---|
4815 | /** |
---|
4816 | * @brief Process function for the Q31 PID Control. |
---|
4817 | * @param[in,out] S points to an instance of the Q31 PID Control structure |
---|
4818 | * @param[in] in input sample to process |
---|
4819 | * @return out processed output sample. |
---|
4820 | * |
---|
4821 | * <b>Scaling and Overflow Behavior:</b> |
---|
4822 | * \par |
---|
4823 | * The function is implemented using an internal 64-bit accumulator. |
---|
4824 | * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. |
---|
4825 | * Thus, if the accumulator result overflows it wraps around rather than clip. |
---|
4826 | * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions. |
---|
4827 | * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format. |
---|
4828 | */ |
---|
4829 | static __INLINE q31_t arm_pid_q31( |
---|
4830 | arm_pid_instance_q31 * S, |
---|
4831 | q31_t in) |
---|
4832 | { |
---|
4833 | q63_t acc; |
---|
4834 | q31_t out; |
---|
4835 | |
---|
4836 | /* acc = A0 * x[n] */ |
---|
4837 | acc = (q63_t) S->A0 * in; |
---|
4838 | |
---|
4839 | /* acc += A1 * x[n-1] */ |
---|
4840 | acc += (q63_t) S->A1 * S->state[0]; |
---|
4841 | |
---|
4842 | /* acc += A2 * x[n-2] */ |
---|
4843 | acc += (q63_t) S->A2 * S->state[1]; |
---|
4844 | |
---|
4845 | /* convert output to 1.31 format to add y[n-1] */ |
---|
4846 | out = (q31_t) (acc >> 31u); |
---|
4847 | |
---|
4848 | /* out += y[n-1] */ |
---|
4849 | out += S->state[2]; |
---|
4850 | |
---|
4851 | /* Update state */ |
---|
4852 | S->state[1] = S->state[0]; |
---|
4853 | S->state[0] = in; |
---|
4854 | S->state[2] = out; |
---|
4855 | |
---|
4856 | /* return to application */ |
---|
4857 | return (out); |
---|
4858 | } |
---|
4859 | |
---|
4860 | |
---|
4861 | /** |
---|
4862 | * @brief Process function for the Q15 PID Control. |
---|
4863 | * @param[in,out] S points to an instance of the Q15 PID Control structure |
---|
4864 | * @param[in] in input sample to process |
---|
4865 | * @return out processed output sample. |
---|
4866 | * |
---|
4867 | * <b>Scaling and Overflow Behavior:</b> |
---|
4868 | * \par |
---|
4869 | * The function is implemented using a 64-bit internal accumulator. |
---|
4870 | * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result. |
---|
4871 | * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. |
---|
4872 | * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved. |
---|
4873 | * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits. |
---|
4874 | * Lastly, the accumulator is saturated to yield a result in 1.15 format. |
---|
4875 | */ |
---|
4876 | static __INLINE q15_t arm_pid_q15( |
---|
4877 | arm_pid_instance_q15 * S, |
---|
4878 | q15_t in) |
---|
4879 | { |
---|
4880 | q63_t acc; |
---|
4881 | q15_t out; |
---|
4882 | |
---|
4883 | #ifndef ARM_MATH_CM0_FAMILY |
---|
4884 | __SIMD32_TYPE *vstate; |
---|
4885 | |
---|
4886 | /* Implementation of PID controller */ |
---|
4887 | |
---|
4888 | /* acc = A0 * x[n] */ |
---|
4889 | acc = (q31_t) __SMUAD((uint32_t)S->A0, (uint32_t)in); |
---|
4890 | |
---|
4891 | /* acc += A1 * x[n-1] + A2 * x[n-2] */ |
---|
4892 | vstate = __SIMD32_CONST(S->state); |
---|
4893 | acc = (q63_t)__SMLALD((uint32_t)S->A1, (uint32_t)*vstate, (uint64_t)acc); |
---|
4894 | #else |
---|
4895 | /* acc = A0 * x[n] */ |
---|
4896 | acc = ((q31_t) S->A0) * in; |
---|
4897 | |
---|
4898 | /* acc += A1 * x[n-1] + A2 * x[n-2] */ |
---|
4899 | acc += (q31_t) S->A1 * S->state[0]; |
---|
4900 | acc += (q31_t) S->A2 * S->state[1]; |
---|
4901 | #endif |
---|
4902 | |
---|
4903 | /* acc += y[n-1] */ |
---|
4904 | acc += (q31_t) S->state[2] << 15; |
---|
4905 | |
---|
4906 | /* saturate the output */ |
---|
4907 | out = (q15_t) (__SSAT((acc >> 15), 16)); |
---|
4908 | |
---|
4909 | /* Update state */ |
---|
4910 | S->state[1] = S->state[0]; |
---|
4911 | S->state[0] = in; |
---|
4912 | S->state[2] = out; |
---|
4913 | |
---|
4914 | /* return to application */ |
---|
4915 | return (out); |
---|
4916 | } |
---|
4917 | |
---|
4918 | /** |
---|
4919 | * @} end of PID group |
---|
4920 | */ |
---|
4921 | |
---|
4922 | |
---|
4923 | /** |
---|
4924 | * @brief Floating-point matrix inverse. |
---|
4925 | * @param[in] src points to the instance of the input floating-point matrix structure. |
---|
4926 | * @param[out] dst points to the instance of the output floating-point matrix structure. |
---|
4927 | * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. |
---|
4928 | * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. |
---|
4929 | */ |
---|
4930 | arm_status arm_mat_inverse_f32( |
---|
4931 | const arm_matrix_instance_f32 * src, |
---|
4932 | arm_matrix_instance_f32 * dst); |
---|
4933 | |
---|
4934 | |
---|
4935 | /** |
---|
4936 | * @brief Floating-point matrix inverse. |
---|
4937 | * @param[in] src points to the instance of the input floating-point matrix structure. |
---|
4938 | * @param[out] dst points to the instance of the output floating-point matrix structure. |
---|
4939 | * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. |
---|
4940 | * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. |
---|
4941 | */ |
---|
4942 | arm_status arm_mat_inverse_f64( |
---|
4943 | const arm_matrix_instance_f64 * src, |
---|
4944 | arm_matrix_instance_f64 * dst); |
---|
4945 | |
---|
4946 | |
---|
4947 | |
---|
4948 | /** |
---|
4949 | * @ingroup groupController |
---|
4950 | */ |
---|
4951 | |
---|
4952 | /** |
---|
4953 | * @defgroup clarke Vector Clarke Transform |
---|
4954 | * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector. |
---|
4955 | * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents |
---|
4956 | * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>. |
---|
4957 | * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below |
---|
4958 | * \image html clarke.gif Stator current space vector and its components in (a,b). |
---|
4959 | * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code> |
---|
4960 | * can be calculated using only <code>Ia</code> and <code>Ib</code>. |
---|
4961 | * |
---|
4962 | * The function operates on a single sample of data and each call to the function returns the processed output. |
---|
4963 | * The library provides separate functions for Q31 and floating-point data types. |
---|
4964 | * \par Algorithm |
---|
4965 | * \image html clarkeFormula.gif |
---|
4966 | * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and |
---|
4967 | * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector. |
---|
4968 | * \par Fixed-Point Behavior |
---|
4969 | * Care must be taken when using the Q31 version of the Clarke transform. |
---|
4970 | * In particular, the overflow and saturation behavior of the accumulator used must be considered. |
---|
4971 | * Refer to the function specific documentation below for usage guidelines. |
---|
4972 | */ |
---|
4973 | |
---|
4974 | /** |
---|
4975 | * @addtogroup clarke |
---|
4976 | * @{ |
---|
4977 | */ |
---|
4978 | |
---|
4979 | /** |
---|
4980 | * |
---|
4981 | * @brief Floating-point Clarke transform |
---|
4982 | * @param[in] Ia input three-phase coordinate <code>a</code> |
---|
4983 | * @param[in] Ib input three-phase coordinate <code>b</code> |
---|
4984 | * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha |
---|
4985 | * @param[out] pIbeta points to output two-phase orthogonal vector axis beta |
---|
4986 | */ |
---|
4987 | static __INLINE void arm_clarke_f32( |
---|
4988 | float32_t Ia, |
---|
4989 | float32_t Ib, |
---|
4990 | float32_t * pIalpha, |
---|
4991 | float32_t * pIbeta) |
---|
4992 | { |
---|
4993 | /* Calculate pIalpha using the equation, pIalpha = Ia */ |
---|
4994 | *pIalpha = Ia; |
---|
4995 | |
---|
4996 | /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */ |
---|
4997 | *pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib); |
---|
4998 | } |
---|
4999 | |
---|
5000 | |
---|
5001 | /** |
---|
5002 | * @brief Clarke transform for Q31 version |
---|
5003 | * @param[in] Ia input three-phase coordinate <code>a</code> |
---|
5004 | * @param[in] Ib input three-phase coordinate <code>b</code> |
---|
5005 | * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha |
---|
5006 | * @param[out] pIbeta points to output two-phase orthogonal vector axis beta |
---|
5007 | * |
---|
5008 | * <b>Scaling and Overflow Behavior:</b> |
---|
5009 | * \par |
---|
5010 | * The function is implemented using an internal 32-bit accumulator. |
---|
5011 | * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. |
---|
5012 | * There is saturation on the addition, hence there is no risk of overflow. |
---|
5013 | */ |
---|
5014 | static __INLINE void arm_clarke_q31( |
---|
5015 | q31_t Ia, |
---|
5016 | q31_t Ib, |
---|
5017 | q31_t * pIalpha, |
---|
5018 | q31_t * pIbeta) |
---|
5019 | { |
---|
5020 | q31_t product1, product2; /* Temporary variables used to store intermediate results */ |
---|
5021 | |
---|
5022 | /* Calculating pIalpha from Ia by equation pIalpha = Ia */ |
---|
5023 | *pIalpha = Ia; |
---|
5024 | |
---|
5025 | /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */ |
---|
5026 | product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30); |
---|
5027 | |
---|
5028 | /* Intermediate product is calculated by (2/sqrt(3) * Ib) */ |
---|
5029 | product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30); |
---|
5030 | |
---|
5031 | /* pIbeta is calculated by adding the intermediate products */ |
---|
5032 | *pIbeta = __QADD(product1, product2); |
---|
5033 | } |
---|
5034 | |
---|
5035 | /** |
---|
5036 | * @} end of clarke group |
---|
5037 | */ |
---|
5038 | |
---|
5039 | /** |
---|
5040 | * @brief Converts the elements of the Q7 vector to Q31 vector. |
---|
5041 | * @param[in] pSrc input pointer |
---|
5042 | * @param[out] pDst output pointer |
---|
5043 | * @param[in] blockSize number of samples to process |
---|
5044 | */ |
---|
5045 | void arm_q7_to_q31( |
---|
5046 | q7_t * pSrc, |
---|
5047 | q31_t * pDst, |
---|
5048 | uint32_t blockSize); |
---|
5049 | |
---|
5050 | |
---|
5051 | |
---|
5052 | /** |
---|
5053 | * @ingroup groupController |
---|
5054 | */ |
---|
5055 | |
---|
5056 | /** |
---|
5057 | * @defgroup inv_clarke Vector Inverse Clarke Transform |
---|
5058 | * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases. |
---|
5059 | * |
---|
5060 | * The function operates on a single sample of data and each call to the function returns the processed output. |
---|
5061 | * The library provides separate functions for Q31 and floating-point data types. |
---|
5062 | * \par Algorithm |
---|
5063 | * \image html clarkeInvFormula.gif |
---|
5064 | * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and |
---|
5065 | * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector. |
---|
5066 | * \par Fixed-Point Behavior |
---|
5067 | * Care must be taken when using the Q31 version of the Clarke transform. |
---|
5068 | * In particular, the overflow and saturation behavior of the accumulator used must be considered. |
---|
5069 | * Refer to the function specific documentation below for usage guidelines. |
---|
5070 | */ |
---|
5071 | |
---|
5072 | /** |
---|
5073 | * @addtogroup inv_clarke |
---|
5074 | * @{ |
---|
5075 | */ |
---|
5076 | |
---|
5077 | /** |
---|
5078 | * @brief Floating-point Inverse Clarke transform |
---|
5079 | * @param[in] Ialpha input two-phase orthogonal vector axis alpha |
---|
5080 | * @param[in] Ibeta input two-phase orthogonal vector axis beta |
---|
5081 | * @param[out] pIa points to output three-phase coordinate <code>a</code> |
---|
5082 | * @param[out] pIb points to output three-phase coordinate <code>b</code> |
---|
5083 | */ |
---|
5084 | static __INLINE void arm_inv_clarke_f32( |
---|
5085 | float32_t Ialpha, |
---|
5086 | float32_t Ibeta, |
---|
5087 | float32_t * pIa, |
---|
5088 | float32_t * pIb) |
---|
5089 | { |
---|
5090 | /* Calculating pIa from Ialpha by equation pIa = Ialpha */ |
---|
5091 | *pIa = Ialpha; |
---|
5092 | |
---|
5093 | /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */ |
---|
5094 | *pIb = -0.5f * Ialpha + 0.8660254039f * Ibeta; |
---|
5095 | } |
---|
5096 | |
---|
5097 | |
---|
5098 | /** |
---|
5099 | * @brief Inverse Clarke transform for Q31 version |
---|
5100 | * @param[in] Ialpha input two-phase orthogonal vector axis alpha |
---|
5101 | * @param[in] Ibeta input two-phase orthogonal vector axis beta |
---|
5102 | * @param[out] pIa points to output three-phase coordinate <code>a</code> |
---|
5103 | * @param[out] pIb points to output three-phase coordinate <code>b</code> |
---|
5104 | * |
---|
5105 | * <b>Scaling and Overflow Behavior:</b> |
---|
5106 | * \par |
---|
5107 | * The function is implemented using an internal 32-bit accumulator. |
---|
5108 | * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. |
---|
5109 | * There is saturation on the subtraction, hence there is no risk of overflow. |
---|
5110 | */ |
---|
5111 | static __INLINE void arm_inv_clarke_q31( |
---|
5112 | q31_t Ialpha, |
---|
5113 | q31_t Ibeta, |
---|
5114 | q31_t * pIa, |
---|
5115 | q31_t * pIb) |
---|
5116 | { |
---|
5117 | q31_t product1, product2; /* Temporary variables used to store intermediate results */ |
---|
5118 | |
---|
5119 | /* Calculating pIa from Ialpha by equation pIa = Ialpha */ |
---|
5120 | *pIa = Ialpha; |
---|
5121 | |
---|
5122 | /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */ |
---|
5123 | product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31); |
---|
5124 | |
---|
5125 | /* Intermediate product is calculated by (1/sqrt(3) * pIb) */ |
---|
5126 | product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31); |
---|
5127 | |
---|
5128 | /* pIb is calculated by subtracting the products */ |
---|
5129 | *pIb = __QSUB(product2, product1); |
---|
5130 | } |
---|
5131 | |
---|
5132 | /** |
---|
5133 | * @} end of inv_clarke group |
---|
5134 | */ |
---|
5135 | |
---|
5136 | /** |
---|
5137 | * @brief Converts the elements of the Q7 vector to Q15 vector. |
---|
5138 | * @param[in] pSrc input pointer |
---|
5139 | * @param[out] pDst output pointer |
---|
5140 | * @param[in] blockSize number of samples to process |
---|
5141 | */ |
---|
5142 | void arm_q7_to_q15( |
---|
5143 | q7_t * pSrc, |
---|
5144 | q15_t * pDst, |
---|
5145 | uint32_t blockSize); |
---|
5146 | |
---|
5147 | |
---|
5148 | |
---|
5149 | /** |
---|
5150 | * @ingroup groupController |
---|
5151 | */ |
---|
5152 | |
---|
5153 | /** |
---|
5154 | * @defgroup park Vector Park Transform |
---|
5155 | * |
---|
5156 | * Forward Park transform converts the input two-coordinate vector to flux and torque components. |
---|
5157 | * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents |
---|
5158 | * from the stationary to the moving reference frame and control the spatial relationship between |
---|
5159 | * the stator vector current and rotor flux vector. |
---|
5160 | * If we consider the d axis aligned with the rotor flux, the diagram below shows the |
---|
5161 | * current vector and the relationship from the two reference frames: |
---|
5162 | * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame" |
---|
5163 | * |
---|
5164 | * The function operates on a single sample of data and each call to the function returns the processed output. |
---|
5165 | * The library provides separate functions for Q31 and floating-point data types. |
---|
5166 | * \par Algorithm |
---|
5167 | * \image html parkFormula.gif |
---|
5168 | * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components, |
---|
5169 | * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the |
---|
5170 | * cosine and sine values of theta (rotor flux position). |
---|
5171 | * \par Fixed-Point Behavior |
---|
5172 | * Care must be taken when using the Q31 version of the Park transform. |
---|
5173 | * In particular, the overflow and saturation behavior of the accumulator used must be considered. |
---|
5174 | * Refer to the function specific documentation below for usage guidelines. |
---|
5175 | */ |
---|
5176 | |
---|
5177 | /** |
---|
5178 | * @addtogroup park |
---|
5179 | * @{ |
---|
5180 | */ |
---|
5181 | |
---|
5182 | /** |
---|
5183 | * @brief Floating-point Park transform |
---|
5184 | * @param[in] Ialpha input two-phase vector coordinate alpha |
---|
5185 | * @param[in] Ibeta input two-phase vector coordinate beta |
---|
5186 | * @param[out] pId points to output rotor reference frame d |
---|
5187 | * @param[out] pIq points to output rotor reference frame q |
---|
5188 | * @param[in] sinVal sine value of rotation angle theta |
---|
5189 | * @param[in] cosVal cosine value of rotation angle theta |
---|
5190 | * |
---|
5191 | * The function implements the forward Park transform. |
---|
5192 | * |
---|
5193 | */ |
---|
5194 | static __INLINE void arm_park_f32( |
---|
5195 | float32_t Ialpha, |
---|
5196 | float32_t Ibeta, |
---|
5197 | float32_t * pId, |
---|
5198 | float32_t * pIq, |
---|
5199 | float32_t sinVal, |
---|
5200 | float32_t cosVal) |
---|
5201 | { |
---|
5202 | /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */ |
---|
5203 | *pId = Ialpha * cosVal + Ibeta * sinVal; |
---|
5204 | |
---|
5205 | /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */ |
---|
5206 | *pIq = -Ialpha * sinVal + Ibeta * cosVal; |
---|
5207 | } |
---|
5208 | |
---|
5209 | |
---|
5210 | /** |
---|
5211 | * @brief Park transform for Q31 version |
---|
5212 | * @param[in] Ialpha input two-phase vector coordinate alpha |
---|
5213 | * @param[in] Ibeta input two-phase vector coordinate beta |
---|
5214 | * @param[out] pId points to output rotor reference frame d |
---|
5215 | * @param[out] pIq points to output rotor reference frame q |
---|
5216 | * @param[in] sinVal sine value of rotation angle theta |
---|
5217 | * @param[in] cosVal cosine value of rotation angle theta |
---|
5218 | * |
---|
5219 | * <b>Scaling and Overflow Behavior:</b> |
---|
5220 | * \par |
---|
5221 | * The function is implemented using an internal 32-bit accumulator. |
---|
5222 | * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. |
---|
5223 | * There is saturation on the addition and subtraction, hence there is no risk of overflow. |
---|
5224 | */ |
---|
5225 | static __INLINE void arm_park_q31( |
---|
5226 | q31_t Ialpha, |
---|
5227 | q31_t Ibeta, |
---|
5228 | q31_t * pId, |
---|
5229 | q31_t * pIq, |
---|
5230 | q31_t sinVal, |
---|
5231 | q31_t cosVal) |
---|
5232 | { |
---|
5233 | q31_t product1, product2; /* Temporary variables used to store intermediate results */ |
---|
5234 | q31_t product3, product4; /* Temporary variables used to store intermediate results */ |
---|
5235 | |
---|
5236 | /* Intermediate product is calculated by (Ialpha * cosVal) */ |
---|
5237 | product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31); |
---|
5238 | |
---|
5239 | /* Intermediate product is calculated by (Ibeta * sinVal) */ |
---|
5240 | product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31); |
---|
5241 | |
---|
5242 | |
---|
5243 | /* Intermediate product is calculated by (Ialpha * sinVal) */ |
---|
5244 | product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31); |
---|
5245 | |
---|
5246 | /* Intermediate product is calculated by (Ibeta * cosVal) */ |
---|
5247 | product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31); |
---|
5248 | |
---|
5249 | /* Calculate pId by adding the two intermediate products 1 and 2 */ |
---|
5250 | *pId = __QADD(product1, product2); |
---|
5251 | |
---|
5252 | /* Calculate pIq by subtracting the two intermediate products 3 from 4 */ |
---|
5253 | *pIq = __QSUB(product4, product3); |
---|
5254 | } |
---|
5255 | |
---|
5256 | /** |
---|
5257 | * @} end of park group |
---|
5258 | */ |
---|
5259 | |
---|
5260 | /** |
---|
5261 | * @brief Converts the elements of the Q7 vector to floating-point vector. |
---|
5262 | * @param[in] pSrc is input pointer |
---|
5263 | * @param[out] pDst is output pointer |
---|
5264 | * @param[in] blockSize is the number of samples to process |
---|
5265 | */ |
---|
5266 | void arm_q7_to_float( |
---|
5267 | q7_t * pSrc, |
---|
5268 | float32_t * pDst, |
---|
5269 | uint32_t blockSize); |
---|
5270 | |
---|
5271 | |
---|
5272 | /** |
---|
5273 | * @ingroup groupController |
---|
5274 | */ |
---|
5275 | |
---|
5276 | /** |
---|
5277 | * @defgroup inv_park Vector Inverse Park transform |
---|
5278 | * Inverse Park transform converts the input flux and torque components to two-coordinate vector. |
---|
5279 | * |
---|
5280 | * The function operates on a single sample of data and each call to the function returns the processed output. |
---|
5281 | * The library provides separate functions for Q31 and floating-point data types. |
---|
5282 | * \par Algorithm |
---|
5283 | * \image html parkInvFormula.gif |
---|
5284 | * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components, |
---|
5285 | * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the |
---|
5286 | * cosine and sine values of theta (rotor flux position). |
---|
5287 | * \par Fixed-Point Behavior |
---|
5288 | * Care must be taken when using the Q31 version of the Park transform. |
---|
5289 | * In particular, the overflow and saturation behavior of the accumulator used must be considered. |
---|
5290 | * Refer to the function specific documentation below for usage guidelines. |
---|
5291 | */ |
---|
5292 | |
---|
5293 | /** |
---|
5294 | * @addtogroup inv_park |
---|
5295 | * @{ |
---|
5296 | */ |
---|
5297 | |
---|
5298 | /** |
---|
5299 | * @brief Floating-point Inverse Park transform |
---|
5300 | * @param[in] Id input coordinate of rotor reference frame d |
---|
5301 | * @param[in] Iq input coordinate of rotor reference frame q |
---|
5302 | * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha |
---|
5303 | * @param[out] pIbeta points to output two-phase orthogonal vector axis beta |
---|
5304 | * @param[in] sinVal sine value of rotation angle theta |
---|
5305 | * @param[in] cosVal cosine value of rotation angle theta |
---|
5306 | */ |
---|
5307 | static __INLINE void arm_inv_park_f32( |
---|
5308 | float32_t Id, |
---|
5309 | float32_t Iq, |
---|
5310 | float32_t * pIalpha, |
---|
5311 | float32_t * pIbeta, |
---|
5312 | float32_t sinVal, |
---|
5313 | float32_t cosVal) |
---|
5314 | { |
---|
5315 | /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */ |
---|
5316 | *pIalpha = Id * cosVal - Iq * sinVal; |
---|
5317 | |
---|
5318 | /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */ |
---|
5319 | *pIbeta = Id * sinVal + Iq * cosVal; |
---|
5320 | } |
---|
5321 | |
---|
5322 | |
---|
5323 | /** |
---|
5324 | * @brief Inverse Park transform for Q31 version |
---|
5325 | * @param[in] Id input coordinate of rotor reference frame d |
---|
5326 | * @param[in] Iq input coordinate of rotor reference frame q |
---|
5327 | * @param[out] pIalpha points to output two-phase orthogonal vector axis alpha |
---|
5328 | * @param[out] pIbeta points to output two-phase orthogonal vector axis beta |
---|
5329 | * @param[in] sinVal sine value of rotation angle theta |
---|
5330 | * @param[in] cosVal cosine value of rotation angle theta |
---|
5331 | * |
---|
5332 | * <b>Scaling and Overflow Behavior:</b> |
---|
5333 | * \par |
---|
5334 | * The function is implemented using an internal 32-bit accumulator. |
---|
5335 | * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format. |
---|
5336 | * There is saturation on the addition, hence there is no risk of overflow. |
---|
5337 | */ |
---|
5338 | static __INLINE void arm_inv_park_q31( |
---|
5339 | q31_t Id, |
---|
5340 | q31_t Iq, |
---|
5341 | q31_t * pIalpha, |
---|
5342 | q31_t * pIbeta, |
---|
5343 | q31_t sinVal, |
---|
5344 | q31_t cosVal) |
---|
5345 | { |
---|
5346 | q31_t product1, product2; /* Temporary variables used to store intermediate results */ |
---|
5347 | q31_t product3, product4; /* Temporary variables used to store intermediate results */ |
---|
5348 | |
---|
5349 | /* Intermediate product is calculated by (Id * cosVal) */ |
---|
5350 | product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31); |
---|
5351 | |
---|
5352 | /* Intermediate product is calculated by (Iq * sinVal) */ |
---|
5353 | product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31); |
---|
5354 | |
---|
5355 | |
---|
5356 | /* Intermediate product is calculated by (Id * sinVal) */ |
---|
5357 | product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31); |
---|
5358 | |
---|
5359 | /* Intermediate product is calculated by (Iq * cosVal) */ |
---|
5360 | product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31); |
---|
5361 | |
---|
5362 | /* Calculate pIalpha by using the two intermediate products 1 and 2 */ |
---|
5363 | *pIalpha = __QSUB(product1, product2); |
---|
5364 | |
---|
5365 | /* Calculate pIbeta by using the two intermediate products 3 and 4 */ |
---|
5366 | *pIbeta = __QADD(product4, product3); |
---|
5367 | } |
---|
5368 | |
---|
5369 | /** |
---|
5370 | * @} end of Inverse park group |
---|
5371 | */ |
---|
5372 | |
---|
5373 | |
---|
5374 | /** |
---|
5375 | * @brief Converts the elements of the Q31 vector to floating-point vector. |
---|
5376 | * @param[in] pSrc is input pointer |
---|
5377 | * @param[out] pDst is output pointer |
---|
5378 | * @param[in] blockSize is the number of samples to process |
---|
5379 | */ |
---|
5380 | void arm_q31_to_float( |
---|
5381 | q31_t * pSrc, |
---|
5382 | float32_t * pDst, |
---|
5383 | uint32_t blockSize); |
---|
5384 | |
---|
5385 | /** |
---|
5386 | * @ingroup groupInterpolation |
---|
5387 | */ |
---|
5388 | |
---|
5389 | /** |
---|
5390 | * @defgroup LinearInterpolate Linear Interpolation |
---|
5391 | * |
---|
5392 | * Linear interpolation is a method of curve fitting using linear polynomials. |
---|
5393 | * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line |
---|
5394 | * |
---|
5395 | * \par |
---|
5396 | * \image html LinearInterp.gif "Linear interpolation" |
---|
5397 | * |
---|
5398 | * \par |
---|
5399 | * A Linear Interpolate function calculates an output value(y), for the input(x) |
---|
5400 | * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values) |
---|
5401 | * |
---|
5402 | * \par Algorithm: |
---|
5403 | * <pre> |
---|
5404 | * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0)) |
---|
5405 | * where x0, x1 are nearest values of input x |
---|
5406 | * y0, y1 are nearest values to output y |
---|
5407 | * </pre> |
---|
5408 | * |
---|
5409 | * \par |
---|
5410 | * This set of functions implements Linear interpolation process |
---|
5411 | * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single |
---|
5412 | * sample of data and each call to the function returns a single processed value. |
---|
5413 | * <code>S</code> points to an instance of the Linear Interpolate function data structure. |
---|
5414 | * <code>x</code> is the input sample value. The functions returns the output value. |
---|
5415 | * |
---|
5416 | * \par |
---|
5417 | * if x is outside of the table boundary, Linear interpolation returns first value of the table |
---|
5418 | * if x is below input range and returns last value of table if x is above range. |
---|
5419 | */ |
---|
5420 | |
---|
5421 | /** |
---|
5422 | * @addtogroup LinearInterpolate |
---|
5423 | * @{ |
---|
5424 | */ |
---|
5425 | |
---|
5426 | /** |
---|
5427 | * @brief Process function for the floating-point Linear Interpolation Function. |
---|
5428 | * @param[in,out] S is an instance of the floating-point Linear Interpolation structure |
---|
5429 | * @param[in] x input sample to process |
---|
5430 | * @return y processed output sample. |
---|
5431 | * |
---|
5432 | */ |
---|
5433 | static __INLINE float32_t arm_linear_interp_f32( |
---|
5434 | arm_linear_interp_instance_f32 * S, |
---|
5435 | float32_t x) |
---|
5436 | { |
---|
5437 | float32_t y; |
---|
5438 | float32_t x0, x1; /* Nearest input values */ |
---|
5439 | float32_t y0, y1; /* Nearest output values */ |
---|
5440 | float32_t xSpacing = S->xSpacing; /* spacing between input values */ |
---|
5441 | int32_t i; /* Index variable */ |
---|
5442 | float32_t *pYData = S->pYData; /* pointer to output table */ |
---|
5443 | |
---|
5444 | /* Calculation of index */ |
---|
5445 | i = (int32_t) ((x - S->x1) / xSpacing); |
---|
5446 | |
---|
5447 | if(i < 0) |
---|
5448 | { |
---|
5449 | /* Iniatilize output for below specified range as least output value of table */ |
---|
5450 | y = pYData[0]; |
---|
5451 | } |
---|
5452 | else if((uint32_t)i >= S->nValues) |
---|
5453 | { |
---|
5454 | /* Iniatilize output for above specified range as last output value of table */ |
---|
5455 | y = pYData[S->nValues - 1]; |
---|
5456 | } |
---|
5457 | else |
---|
5458 | { |
---|
5459 | /* Calculation of nearest input values */ |
---|
5460 | x0 = S->x1 + i * xSpacing; |
---|
5461 | x1 = S->x1 + (i + 1) * xSpacing; |
---|
5462 | |
---|
5463 | /* Read of nearest output values */ |
---|
5464 | y0 = pYData[i]; |
---|
5465 | y1 = pYData[i + 1]; |
---|
5466 | |
---|
5467 | /* Calculation of output */ |
---|
5468 | y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0)); |
---|
5469 | |
---|
5470 | } |
---|
5471 | |
---|
5472 | /* returns output value */ |
---|
5473 | return (y); |
---|
5474 | } |
---|
5475 | |
---|
5476 | |
---|
5477 | /** |
---|
5478 | * |
---|
5479 | * @brief Process function for the Q31 Linear Interpolation Function. |
---|
5480 | * @param[in] pYData pointer to Q31 Linear Interpolation table |
---|
5481 | * @param[in] x input sample to process |
---|
5482 | * @param[in] nValues number of table values |
---|
5483 | * @return y processed output sample. |
---|
5484 | * |
---|
5485 | * \par |
---|
5486 | * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. |
---|
5487 | * This function can support maximum of table size 2^12. |
---|
5488 | * |
---|
5489 | */ |
---|
5490 | static __INLINE q31_t arm_linear_interp_q31( |
---|
5491 | q31_t * pYData, |
---|
5492 | q31_t x, |
---|
5493 | uint32_t nValues) |
---|
5494 | { |
---|
5495 | q31_t y; /* output */ |
---|
5496 | q31_t y0, y1; /* Nearest output values */ |
---|
5497 | q31_t fract; /* fractional part */ |
---|
5498 | int32_t index; /* Index to read nearest output values */ |
---|
5499 | |
---|
5500 | /* Input is in 12.20 format */ |
---|
5501 | /* 12 bits for the table index */ |
---|
5502 | /* Index value calculation */ |
---|
5503 | index = ((x & (q31_t)0xFFF00000) >> 20); |
---|
5504 | |
---|
5505 | if(index >= (int32_t)(nValues - 1)) |
---|
5506 | { |
---|
5507 | return (pYData[nValues - 1]); |
---|
5508 | } |
---|
5509 | else if(index < 0) |
---|
5510 | { |
---|
5511 | return (pYData[0]); |
---|
5512 | } |
---|
5513 | else |
---|
5514 | { |
---|
5515 | /* 20 bits for the fractional part */ |
---|
5516 | /* shift left by 11 to keep fract in 1.31 format */ |
---|
5517 | fract = (x & 0x000FFFFF) << 11; |
---|
5518 | |
---|
5519 | /* Read two nearest output values from the index in 1.31(q31) format */ |
---|
5520 | y0 = pYData[index]; |
---|
5521 | y1 = pYData[index + 1]; |
---|
5522 | |
---|
5523 | /* Calculation of y0 * (1-fract) and y is in 2.30 format */ |
---|
5524 | y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32)); |
---|
5525 | |
---|
5526 | /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */ |
---|
5527 | y += ((q31_t) (((q63_t) y1 * fract) >> 32)); |
---|
5528 | |
---|
5529 | /* Convert y to 1.31 format */ |
---|
5530 | return (y << 1u); |
---|
5531 | } |
---|
5532 | } |
---|
5533 | |
---|
5534 | |
---|
5535 | /** |
---|
5536 | * |
---|
5537 | * @brief Process function for the Q15 Linear Interpolation Function. |
---|
5538 | * @param[in] pYData pointer to Q15 Linear Interpolation table |
---|
5539 | * @param[in] x input sample to process |
---|
5540 | * @param[in] nValues number of table values |
---|
5541 | * @return y processed output sample. |
---|
5542 | * |
---|
5543 | * \par |
---|
5544 | * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. |
---|
5545 | * This function can support maximum of table size 2^12. |
---|
5546 | * |
---|
5547 | */ |
---|
5548 | static __INLINE q15_t arm_linear_interp_q15( |
---|
5549 | q15_t * pYData, |
---|
5550 | q31_t x, |
---|
5551 | uint32_t nValues) |
---|
5552 | { |
---|
5553 | q63_t y; /* output */ |
---|
5554 | q15_t y0, y1; /* Nearest output values */ |
---|
5555 | q31_t fract; /* fractional part */ |
---|
5556 | int32_t index; /* Index to read nearest output values */ |
---|
5557 | |
---|
5558 | /* Input is in 12.20 format */ |
---|
5559 | /* 12 bits for the table index */ |
---|
5560 | /* Index value calculation */ |
---|
5561 | index = ((x & (int32_t)0xFFF00000) >> 20); |
---|
5562 | |
---|
5563 | if(index >= (int32_t)(nValues - 1)) |
---|
5564 | { |
---|
5565 | return (pYData[nValues - 1]); |
---|
5566 | } |
---|
5567 | else if(index < 0) |
---|
5568 | { |
---|
5569 | return (pYData[0]); |
---|
5570 | } |
---|
5571 | else |
---|
5572 | { |
---|
5573 | /* 20 bits for the fractional part */ |
---|
5574 | /* fract is in 12.20 format */ |
---|
5575 | fract = (x & 0x000FFFFF); |
---|
5576 | |
---|
5577 | /* Read two nearest output values from the index */ |
---|
5578 | y0 = pYData[index]; |
---|
5579 | y1 = pYData[index + 1]; |
---|
5580 | |
---|
5581 | /* Calculation of y0 * (1-fract) and y is in 13.35 format */ |
---|
5582 | y = ((q63_t) y0 * (0xFFFFF - fract)); |
---|
5583 | |
---|
5584 | /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */ |
---|
5585 | y += ((q63_t) y1 * (fract)); |
---|
5586 | |
---|
5587 | /* convert y to 1.15 format */ |
---|
5588 | return (q15_t) (y >> 20); |
---|
5589 | } |
---|
5590 | } |
---|
5591 | |
---|
5592 | |
---|
5593 | /** |
---|
5594 | * |
---|
5595 | * @brief Process function for the Q7 Linear Interpolation Function. |
---|
5596 | * @param[in] pYData pointer to Q7 Linear Interpolation table |
---|
5597 | * @param[in] x input sample to process |
---|
5598 | * @param[in] nValues number of table values |
---|
5599 | * @return y processed output sample. |
---|
5600 | * |
---|
5601 | * \par |
---|
5602 | * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part. |
---|
5603 | * This function can support maximum of table size 2^12. |
---|
5604 | */ |
---|
5605 | static __INLINE q7_t arm_linear_interp_q7( |
---|
5606 | q7_t * pYData, |
---|
5607 | q31_t x, |
---|
5608 | uint32_t nValues) |
---|
5609 | { |
---|
5610 | q31_t y; /* output */ |
---|
5611 | q7_t y0, y1; /* Nearest output values */ |
---|
5612 | q31_t fract; /* fractional part */ |
---|
5613 | uint32_t index; /* Index to read nearest output values */ |
---|
5614 | |
---|
5615 | /* Input is in 12.20 format */ |
---|
5616 | /* 12 bits for the table index */ |
---|
5617 | /* Index value calculation */ |
---|
5618 | if (x < 0) |
---|
5619 | { |
---|
5620 | return (pYData[0]); |
---|
5621 | } |
---|
5622 | index = (x >> 20) & 0xfff; |
---|
5623 | |
---|
5624 | if(index >= (nValues - 1)) |
---|
5625 | { |
---|
5626 | return (pYData[nValues - 1]); |
---|
5627 | } |
---|
5628 | else |
---|
5629 | { |
---|
5630 | /* 20 bits for the fractional part */ |
---|
5631 | /* fract is in 12.20 format */ |
---|
5632 | fract = (x & 0x000FFFFF); |
---|
5633 | |
---|
5634 | /* Read two nearest output values from the index and are in 1.7(q7) format */ |
---|
5635 | y0 = pYData[index]; |
---|
5636 | y1 = pYData[index + 1]; |
---|
5637 | |
---|
5638 | /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */ |
---|
5639 | y = ((y0 * (0xFFFFF - fract))); |
---|
5640 | |
---|
5641 | /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */ |
---|
5642 | y += (y1 * fract); |
---|
5643 | |
---|
5644 | /* convert y to 1.7(q7) format */ |
---|
5645 | return (q7_t) (y >> 20); |
---|
5646 | } |
---|
5647 | } |
---|
5648 | |
---|
5649 | /** |
---|
5650 | * @} end of LinearInterpolate group |
---|
5651 | */ |
---|
5652 | |
---|
5653 | /** |
---|
5654 | * @brief Fast approximation to the trigonometric sine function for floating-point data. |
---|
5655 | * @param[in] x input value in radians. |
---|
5656 | * @return sin(x). |
---|
5657 | */ |
---|
5658 | float32_t arm_sin_f32( |
---|
5659 | float32_t x); |
---|
5660 | |
---|
5661 | |
---|
5662 | /** |
---|
5663 | * @brief Fast approximation to the trigonometric sine function for Q31 data. |
---|
5664 | * @param[in] x Scaled input value in radians. |
---|
5665 | * @return sin(x). |
---|
5666 | */ |
---|
5667 | q31_t arm_sin_q31( |
---|
5668 | q31_t x); |
---|
5669 | |
---|
5670 | |
---|
5671 | /** |
---|
5672 | * @brief Fast approximation to the trigonometric sine function for Q15 data. |
---|
5673 | * @param[in] x Scaled input value in radians. |
---|
5674 | * @return sin(x). |
---|
5675 | */ |
---|
5676 | q15_t arm_sin_q15( |
---|
5677 | q15_t x); |
---|
5678 | |
---|
5679 | |
---|
5680 | /** |
---|
5681 | * @brief Fast approximation to the trigonometric cosine function for floating-point data. |
---|
5682 | * @param[in] x input value in radians. |
---|
5683 | * @return cos(x). |
---|
5684 | */ |
---|
5685 | float32_t arm_cos_f32( |
---|
5686 | float32_t x); |
---|
5687 | |
---|
5688 | |
---|
5689 | /** |
---|
5690 | * @brief Fast approximation to the trigonometric cosine function for Q31 data. |
---|
5691 | * @param[in] x Scaled input value in radians. |
---|
5692 | * @return cos(x). |
---|
5693 | */ |
---|
5694 | q31_t arm_cos_q31( |
---|
5695 | q31_t x); |
---|
5696 | |
---|
5697 | |
---|
5698 | /** |
---|
5699 | * @brief Fast approximation to the trigonometric cosine function for Q15 data. |
---|
5700 | * @param[in] x Scaled input value in radians. |
---|
5701 | * @return cos(x). |
---|
5702 | */ |
---|
5703 | q15_t arm_cos_q15( |
---|
5704 | q15_t x); |
---|
5705 | |
---|
5706 | |
---|
5707 | /** |
---|
5708 | * @ingroup groupFastMath |
---|
5709 | */ |
---|
5710 | |
---|
5711 | |
---|
5712 | /** |
---|
5713 | * @defgroup SQRT Square Root |
---|
5714 | * |
---|
5715 | * Computes the square root of a number. |
---|
5716 | * There are separate functions for Q15, Q31, and floating-point data types. |
---|
5717 | * The square root function is computed using the Newton-Raphson algorithm. |
---|
5718 | * This is an iterative algorithm of the form: |
---|
5719 | * <pre> |
---|
5720 | * x1 = x0 - f(x0)/f'(x0) |
---|
5721 | * </pre> |
---|
5722 | * where <code>x1</code> is the current estimate, |
---|
5723 | * <code>x0</code> is the previous estimate, and |
---|
5724 | * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>. |
---|
5725 | * For the square root function, the algorithm reduces to: |
---|
5726 | * <pre> |
---|
5727 | * x0 = in/2 [initial guess] |
---|
5728 | * x1 = 1/2 * ( x0 + in / x0) [each iteration] |
---|
5729 | * </pre> |
---|
5730 | */ |
---|
5731 | |
---|
5732 | |
---|
5733 | /** |
---|
5734 | * @addtogroup SQRT |
---|
5735 | * @{ |
---|
5736 | */ |
---|
5737 | |
---|
5738 | /** |
---|
5739 | * @brief Floating-point square root function. |
---|
5740 | * @param[in] in input value. |
---|
5741 | * @param[out] pOut square root of input value. |
---|
5742 | * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if |
---|
5743 | * <code>in</code> is negative value and returns zero output for negative values. |
---|
5744 | */ |
---|
5745 | static __INLINE arm_status arm_sqrt_f32( |
---|
5746 | float32_t in, |
---|
5747 | float32_t * pOut) |
---|
5748 | { |
---|
5749 | if(in >= 0.0f) |
---|
5750 | { |
---|
5751 | |
---|
5752 | #if (__FPU_USED == 1) && defined ( __CC_ARM ) |
---|
5753 | *pOut = __sqrtf(in); |
---|
5754 | #elif (__FPU_USED == 1) && (defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)) |
---|
5755 | *pOut = __builtin_sqrtf(in); |
---|
5756 | #elif (__FPU_USED == 1) && defined(__GNUC__) |
---|
5757 | *pOut = __builtin_sqrtf(in); |
---|
5758 | #elif (__FPU_USED == 1) && defined ( __ICCARM__ ) && (__VER__ >= 6040000) |
---|
5759 | __ASM("VSQRT.F32 %0,%1" : "=t"(*pOut) : "t"(in)); |
---|
5760 | #else |
---|
5761 | *pOut = sqrtf(in); |
---|
5762 | #endif |
---|
5763 | |
---|
5764 | return (ARM_MATH_SUCCESS); |
---|
5765 | } |
---|
5766 | else |
---|
5767 | { |
---|
5768 | *pOut = 0.0f; |
---|
5769 | return (ARM_MATH_ARGUMENT_ERROR); |
---|
5770 | } |
---|
5771 | } |
---|
5772 | |
---|
5773 | |
---|
5774 | /** |
---|
5775 | * @brief Q31 square root function. |
---|
5776 | * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF. |
---|
5777 | * @param[out] pOut square root of input value. |
---|
5778 | * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if |
---|
5779 | * <code>in</code> is negative value and returns zero output for negative values. |
---|
5780 | */ |
---|
5781 | arm_status arm_sqrt_q31( |
---|
5782 | q31_t in, |
---|
5783 | q31_t * pOut); |
---|
5784 | |
---|
5785 | |
---|
5786 | /** |
---|
5787 | * @brief Q15 square root function. |
---|
5788 | * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF. |
---|
5789 | * @param[out] pOut square root of input value. |
---|
5790 | * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if |
---|
5791 | * <code>in</code> is negative value and returns zero output for negative values. |
---|
5792 | */ |
---|
5793 | arm_status arm_sqrt_q15( |
---|
5794 | q15_t in, |
---|
5795 | q15_t * pOut); |
---|
5796 | |
---|
5797 | /** |
---|
5798 | * @} end of SQRT group |
---|
5799 | */ |
---|
5800 | |
---|
5801 | |
---|
5802 | /** |
---|
5803 | * @brief floating-point Circular write function. |
---|
5804 | */ |
---|
5805 | static __INLINE void arm_circularWrite_f32( |
---|
5806 | int32_t * circBuffer, |
---|
5807 | int32_t L, |
---|
5808 | uint16_t * writeOffset, |
---|
5809 | int32_t bufferInc, |
---|
5810 | const int32_t * src, |
---|
5811 | int32_t srcInc, |
---|
5812 | uint32_t blockSize) |
---|
5813 | { |
---|
5814 | uint32_t i = 0u; |
---|
5815 | int32_t wOffset; |
---|
5816 | |
---|
5817 | /* Copy the value of Index pointer that points |
---|
5818 | * to the current location where the input samples to be copied */ |
---|
5819 | wOffset = *writeOffset; |
---|
5820 | |
---|
5821 | /* Loop over the blockSize */ |
---|
5822 | i = blockSize; |
---|
5823 | |
---|
5824 | while(i > 0u) |
---|
5825 | { |
---|
5826 | /* copy the input sample to the circular buffer */ |
---|
5827 | circBuffer[wOffset] = *src; |
---|
5828 | |
---|
5829 | /* Update the input pointer */ |
---|
5830 | src += srcInc; |
---|
5831 | |
---|
5832 | /* Circularly update wOffset. Watch out for positive and negative value */ |
---|
5833 | wOffset += bufferInc; |
---|
5834 | if(wOffset >= L) |
---|
5835 | wOffset -= L; |
---|
5836 | |
---|
5837 | /* Decrement the loop counter */ |
---|
5838 | i--; |
---|
5839 | } |
---|
5840 | |
---|
5841 | /* Update the index pointer */ |
---|
5842 | *writeOffset = (uint16_t)wOffset; |
---|
5843 | } |
---|
5844 | |
---|
5845 | |
---|
5846 | |
---|
5847 | /** |
---|
5848 | * @brief floating-point Circular Read function. |
---|
5849 | */ |
---|
5850 | static __INLINE void arm_circularRead_f32( |
---|
5851 | int32_t * circBuffer, |
---|
5852 | int32_t L, |
---|
5853 | int32_t * readOffset, |
---|
5854 | int32_t bufferInc, |
---|
5855 | int32_t * dst, |
---|
5856 | int32_t * dst_base, |
---|
5857 | int32_t dst_length, |
---|
5858 | int32_t dstInc, |
---|
5859 | uint32_t blockSize) |
---|
5860 | { |
---|
5861 | uint32_t i = 0u; |
---|
5862 | int32_t rOffset, dst_end; |
---|
5863 | |
---|
5864 | /* Copy the value of Index pointer that points |
---|
5865 | * to the current location from where the input samples to be read */ |
---|
5866 | rOffset = *readOffset; |
---|
5867 | dst_end = (int32_t) (dst_base + dst_length); |
---|
5868 | |
---|
5869 | /* Loop over the blockSize */ |
---|
5870 | i = blockSize; |
---|
5871 | |
---|
5872 | while(i > 0u) |
---|
5873 | { |
---|
5874 | /* copy the sample from the circular buffer to the destination buffer */ |
---|
5875 | *dst = circBuffer[rOffset]; |
---|
5876 | |
---|
5877 | /* Update the input pointer */ |
---|
5878 | dst += dstInc; |
---|
5879 | |
---|
5880 | if(dst == (int32_t *) dst_end) |
---|
5881 | { |
---|
5882 | dst = dst_base; |
---|
5883 | } |
---|
5884 | |
---|
5885 | /* Circularly update rOffset. Watch out for positive and negative value */ |
---|
5886 | rOffset += bufferInc; |
---|
5887 | |
---|
5888 | if(rOffset >= L) |
---|
5889 | { |
---|
5890 | rOffset -= L; |
---|
5891 | } |
---|
5892 | |
---|
5893 | /* Decrement the loop counter */ |
---|
5894 | i--; |
---|
5895 | } |
---|
5896 | |
---|
5897 | /* Update the index pointer */ |
---|
5898 | *readOffset = rOffset; |
---|
5899 | } |
---|
5900 | |
---|
5901 | |
---|
5902 | /** |
---|
5903 | * @brief Q15 Circular write function. |
---|
5904 | */ |
---|
5905 | static __INLINE void arm_circularWrite_q15( |
---|
5906 | q15_t * circBuffer, |
---|
5907 | int32_t L, |
---|
5908 | uint16_t * writeOffset, |
---|
5909 | int32_t bufferInc, |
---|
5910 | const q15_t * src, |
---|
5911 | int32_t srcInc, |
---|
5912 | uint32_t blockSize) |
---|
5913 | { |
---|
5914 | uint32_t i = 0u; |
---|
5915 | int32_t wOffset; |
---|
5916 | |
---|
5917 | /* Copy the value of Index pointer that points |
---|
5918 | * to the current location where the input samples to be copied */ |
---|
5919 | wOffset = *writeOffset; |
---|
5920 | |
---|
5921 | /* Loop over the blockSize */ |
---|
5922 | i = blockSize; |
---|
5923 | |
---|
5924 | while(i > 0u) |
---|
5925 | { |
---|
5926 | /* copy the input sample to the circular buffer */ |
---|
5927 | circBuffer[wOffset] = *src; |
---|
5928 | |
---|
5929 | /* Update the input pointer */ |
---|
5930 | src += srcInc; |
---|
5931 | |
---|
5932 | /* Circularly update wOffset. Watch out for positive and negative value */ |
---|
5933 | wOffset += bufferInc; |
---|
5934 | if(wOffset >= L) |
---|
5935 | wOffset -= L; |
---|
5936 | |
---|
5937 | /* Decrement the loop counter */ |
---|
5938 | i--; |
---|
5939 | } |
---|
5940 | |
---|
5941 | /* Update the index pointer */ |
---|
5942 | *writeOffset = (uint16_t)wOffset; |
---|
5943 | } |
---|
5944 | |
---|
5945 | |
---|
5946 | /** |
---|
5947 | * @brief Q15 Circular Read function. |
---|
5948 | */ |
---|
5949 | static __INLINE void arm_circularRead_q15( |
---|
5950 | q15_t * circBuffer, |
---|
5951 | int32_t L, |
---|
5952 | int32_t * readOffset, |
---|
5953 | int32_t bufferInc, |
---|
5954 | q15_t * dst, |
---|
5955 | q15_t * dst_base, |
---|
5956 | int32_t dst_length, |
---|
5957 | int32_t dstInc, |
---|
5958 | uint32_t blockSize) |
---|
5959 | { |
---|
5960 | uint32_t i = 0; |
---|
5961 | int32_t rOffset, dst_end; |
---|
5962 | |
---|
5963 | /* Copy the value of Index pointer that points |
---|
5964 | * to the current location from where the input samples to be read */ |
---|
5965 | rOffset = *readOffset; |
---|
5966 | |
---|
5967 | dst_end = (int32_t) (dst_base + dst_length); |
---|
5968 | |
---|
5969 | /* Loop over the blockSize */ |
---|
5970 | i = blockSize; |
---|
5971 | |
---|
5972 | while(i > 0u) |
---|
5973 | { |
---|
5974 | /* copy the sample from the circular buffer to the destination buffer */ |
---|
5975 | *dst = circBuffer[rOffset]; |
---|
5976 | |
---|
5977 | /* Update the input pointer */ |
---|
5978 | dst += dstInc; |
---|
5979 | |
---|
5980 | if(dst == (q15_t *) dst_end) |
---|
5981 | { |
---|
5982 | dst = dst_base; |
---|
5983 | } |
---|
5984 | |
---|
5985 | /* Circularly update wOffset. Watch out for positive and negative value */ |
---|
5986 | rOffset += bufferInc; |
---|
5987 | |
---|
5988 | if(rOffset >= L) |
---|
5989 | { |
---|
5990 | rOffset -= L; |
---|
5991 | } |
---|
5992 | |
---|
5993 | /* Decrement the loop counter */ |
---|
5994 | i--; |
---|
5995 | } |
---|
5996 | |
---|
5997 | /* Update the index pointer */ |
---|
5998 | *readOffset = rOffset; |
---|
5999 | } |
---|
6000 | |
---|
6001 | |
---|
6002 | /** |
---|
6003 | * @brief Q7 Circular write function. |
---|
6004 | */ |
---|
6005 | static __INLINE void arm_circularWrite_q7( |
---|
6006 | q7_t * circBuffer, |
---|
6007 | int32_t L, |
---|
6008 | uint16_t * writeOffset, |
---|
6009 | int32_t bufferInc, |
---|
6010 | const q7_t * src, |
---|
6011 | int32_t srcInc, |
---|
6012 | uint32_t blockSize) |
---|
6013 | { |
---|
6014 | uint32_t i = 0u; |
---|
6015 | int32_t wOffset; |
---|
6016 | |
---|
6017 | /* Copy the value of Index pointer that points |
---|
6018 | * to the current location where the input samples to be copied */ |
---|
6019 | wOffset = *writeOffset; |
---|
6020 | |
---|
6021 | /* Loop over the blockSize */ |
---|
6022 | i = blockSize; |
---|
6023 | |
---|
6024 | while(i > 0u) |
---|
6025 | { |
---|
6026 | /* copy the input sample to the circular buffer */ |
---|
6027 | circBuffer[wOffset] = *src; |
---|
6028 | |
---|
6029 | /* Update the input pointer */ |
---|
6030 | src += srcInc; |
---|
6031 | |
---|
6032 | /* Circularly update wOffset. Watch out for positive and negative value */ |
---|
6033 | wOffset += bufferInc; |
---|
6034 | if(wOffset >= L) |
---|
6035 | wOffset -= L; |
---|
6036 | |
---|
6037 | /* Decrement the loop counter */ |
---|
6038 | i--; |
---|
6039 | } |
---|
6040 | |
---|
6041 | /* Update the index pointer */ |
---|
6042 | *writeOffset = (uint16_t)wOffset; |
---|
6043 | } |
---|
6044 | |
---|
6045 | |
---|
6046 | /** |
---|
6047 | * @brief Q7 Circular Read function. |
---|
6048 | */ |
---|
6049 | static __INLINE void arm_circularRead_q7( |
---|
6050 | q7_t * circBuffer, |
---|
6051 | int32_t L, |
---|
6052 | int32_t * readOffset, |
---|
6053 | int32_t bufferInc, |
---|
6054 | q7_t * dst, |
---|
6055 | q7_t * dst_base, |
---|
6056 | int32_t dst_length, |
---|
6057 | int32_t dstInc, |
---|
6058 | uint32_t blockSize) |
---|
6059 | { |
---|
6060 | uint32_t i = 0; |
---|
6061 | int32_t rOffset, dst_end; |
---|
6062 | |
---|
6063 | /* Copy the value of Index pointer that points |
---|
6064 | * to the current location from where the input samples to be read */ |
---|
6065 | rOffset = *readOffset; |
---|
6066 | |
---|
6067 | dst_end = (int32_t) (dst_base + dst_length); |
---|
6068 | |
---|
6069 | /* Loop over the blockSize */ |
---|
6070 | i = blockSize; |
---|
6071 | |
---|
6072 | while(i > 0u) |
---|
6073 | { |
---|
6074 | /* copy the sample from the circular buffer to the destination buffer */ |
---|
6075 | *dst = circBuffer[rOffset]; |
---|
6076 | |
---|
6077 | /* Update the input pointer */ |
---|
6078 | dst += dstInc; |
---|
6079 | |
---|
6080 | if(dst == (q7_t *) dst_end) |
---|
6081 | { |
---|
6082 | dst = dst_base; |
---|
6083 | } |
---|
6084 | |
---|
6085 | /* Circularly update rOffset. Watch out for positive and negative value */ |
---|
6086 | rOffset += bufferInc; |
---|
6087 | |
---|
6088 | if(rOffset >= L) |
---|
6089 | { |
---|
6090 | rOffset -= L; |
---|
6091 | } |
---|
6092 | |
---|
6093 | /* Decrement the loop counter */ |
---|
6094 | i--; |
---|
6095 | } |
---|
6096 | |
---|
6097 | /* Update the index pointer */ |
---|
6098 | *readOffset = rOffset; |
---|
6099 | } |
---|
6100 | |
---|
6101 | |
---|
6102 | /** |
---|
6103 | * @brief Sum of the squares of the elements of a Q31 vector. |
---|
6104 | * @param[in] pSrc is input pointer |
---|
6105 | * @param[in] blockSize is the number of samples to process |
---|
6106 | * @param[out] pResult is output value. |
---|
6107 | */ |
---|
6108 | void arm_power_q31( |
---|
6109 | q31_t * pSrc, |
---|
6110 | uint32_t blockSize, |
---|
6111 | q63_t * pResult); |
---|
6112 | |
---|
6113 | |
---|
6114 | /** |
---|
6115 | * @brief Sum of the squares of the elements of a floating-point vector. |
---|
6116 | * @param[in] pSrc is input pointer |
---|
6117 | * @param[in] blockSize is the number of samples to process |
---|
6118 | * @param[out] pResult is output value. |
---|
6119 | */ |
---|
6120 | void arm_power_f32( |
---|
6121 | float32_t * pSrc, |
---|
6122 | uint32_t blockSize, |
---|
6123 | float32_t * pResult); |
---|
6124 | |
---|
6125 | |
---|
6126 | /** |
---|
6127 | * @brief Sum of the squares of the elements of a Q15 vector. |
---|
6128 | * @param[in] pSrc is input pointer |
---|
6129 | * @param[in] blockSize is the number of samples to process |
---|
6130 | * @param[out] pResult is output value. |
---|
6131 | */ |
---|
6132 | void arm_power_q15( |
---|
6133 | q15_t * pSrc, |
---|
6134 | uint32_t blockSize, |
---|
6135 | q63_t * pResult); |
---|
6136 | |
---|
6137 | |
---|
6138 | /** |
---|
6139 | * @brief Sum of the squares of the elements of a Q7 vector. |
---|
6140 | * @param[in] pSrc is input pointer |
---|
6141 | * @param[in] blockSize is the number of samples to process |
---|
6142 | * @param[out] pResult is output value. |
---|
6143 | */ |
---|
6144 | void arm_power_q7( |
---|
6145 | q7_t * pSrc, |
---|
6146 | uint32_t blockSize, |
---|
6147 | q31_t * pResult); |
---|
6148 | |
---|
6149 | |
---|
6150 | /** |
---|
6151 | * @brief Mean value of a Q7 vector. |
---|
6152 | * @param[in] pSrc is input pointer |
---|
6153 | * @param[in] blockSize is the number of samples to process |
---|
6154 | * @param[out] pResult is output value. |
---|
6155 | */ |
---|
6156 | void arm_mean_q7( |
---|
6157 | q7_t * pSrc, |
---|
6158 | uint32_t blockSize, |
---|
6159 | q7_t * pResult); |
---|
6160 | |
---|
6161 | |
---|
6162 | /** |
---|
6163 | * @brief Mean value of a Q15 vector. |
---|
6164 | * @param[in] pSrc is input pointer |
---|
6165 | * @param[in] blockSize is the number of samples to process |
---|
6166 | * @param[out] pResult is output value. |
---|
6167 | */ |
---|
6168 | void arm_mean_q15( |
---|
6169 | q15_t * pSrc, |
---|
6170 | uint32_t blockSize, |
---|
6171 | q15_t * pResult); |
---|
6172 | |
---|
6173 | |
---|
6174 | /** |
---|
6175 | * @brief Mean value of a Q31 vector. |
---|
6176 | * @param[in] pSrc is input pointer |
---|
6177 | * @param[in] blockSize is the number of samples to process |
---|
6178 | * @param[out] pResult is output value. |
---|
6179 | */ |
---|
6180 | void arm_mean_q31( |
---|
6181 | q31_t * pSrc, |
---|
6182 | uint32_t blockSize, |
---|
6183 | q31_t * pResult); |
---|
6184 | |
---|
6185 | |
---|
6186 | /** |
---|
6187 | * @brief Mean value of a floating-point vector. |
---|
6188 | * @param[in] pSrc is input pointer |
---|
6189 | * @param[in] blockSize is the number of samples to process |
---|
6190 | * @param[out] pResult is output value. |
---|
6191 | */ |
---|
6192 | void arm_mean_f32( |
---|
6193 | float32_t * pSrc, |
---|
6194 | uint32_t blockSize, |
---|
6195 | float32_t * pResult); |
---|
6196 | |
---|
6197 | |
---|
6198 | /** |
---|
6199 | * @brief Variance of the elements of a floating-point vector. |
---|
6200 | * @param[in] pSrc is input pointer |
---|
6201 | * @param[in] blockSize is the number of samples to process |
---|
6202 | * @param[out] pResult is output value. |
---|
6203 | */ |
---|
6204 | void arm_var_f32( |
---|
6205 | float32_t * pSrc, |
---|
6206 | uint32_t blockSize, |
---|
6207 | float32_t * pResult); |
---|
6208 | |
---|
6209 | |
---|
6210 | /** |
---|
6211 | * @brief Variance of the elements of a Q31 vector. |
---|
6212 | * @param[in] pSrc is input pointer |
---|
6213 | * @param[in] blockSize is the number of samples to process |
---|
6214 | * @param[out] pResult is output value. |
---|
6215 | */ |
---|
6216 | void arm_var_q31( |
---|
6217 | q31_t * pSrc, |
---|
6218 | uint32_t blockSize, |
---|
6219 | q31_t * pResult); |
---|
6220 | |
---|
6221 | |
---|
6222 | /** |
---|
6223 | * @brief Variance of the elements of a Q15 vector. |
---|
6224 | * @param[in] pSrc is input pointer |
---|
6225 | * @param[in] blockSize is the number of samples to process |
---|
6226 | * @param[out] pResult is output value. |
---|
6227 | */ |
---|
6228 | void arm_var_q15( |
---|
6229 | q15_t * pSrc, |
---|
6230 | uint32_t blockSize, |
---|
6231 | q15_t * pResult); |
---|
6232 | |
---|
6233 | |
---|
6234 | /** |
---|
6235 | * @brief Root Mean Square of the elements of a floating-point vector. |
---|
6236 | * @param[in] pSrc is input pointer |
---|
6237 | * @param[in] blockSize is the number of samples to process |
---|
6238 | * @param[out] pResult is output value. |
---|
6239 | */ |
---|
6240 | void arm_rms_f32( |
---|
6241 | float32_t * pSrc, |
---|
6242 | uint32_t blockSize, |
---|
6243 | float32_t * pResult); |
---|
6244 | |
---|
6245 | |
---|
6246 | /** |
---|
6247 | * @brief Root Mean Square of the elements of a Q31 vector. |
---|
6248 | * @param[in] pSrc is input pointer |
---|
6249 | * @param[in] blockSize is the number of samples to process |
---|
6250 | * @param[out] pResult is output value. |
---|
6251 | */ |
---|
6252 | void arm_rms_q31( |
---|
6253 | q31_t * pSrc, |
---|
6254 | uint32_t blockSize, |
---|
6255 | q31_t * pResult); |
---|
6256 | |
---|
6257 | |
---|
6258 | /** |
---|
6259 | * @brief Root Mean Square of the elements of a Q15 vector. |
---|
6260 | * @param[in] pSrc is input pointer |
---|
6261 | * @param[in] blockSize is the number of samples to process |
---|
6262 | * @param[out] pResult is output value. |
---|
6263 | */ |
---|
6264 | void arm_rms_q15( |
---|
6265 | q15_t * pSrc, |
---|
6266 | uint32_t blockSize, |
---|
6267 | q15_t * pResult); |
---|
6268 | |
---|
6269 | |
---|
6270 | /** |
---|
6271 | * @brief Standard deviation of the elements of a floating-point vector. |
---|
6272 | * @param[in] pSrc is input pointer |
---|
6273 | * @param[in] blockSize is the number of samples to process |
---|
6274 | * @param[out] pResult is output value. |
---|
6275 | */ |
---|
6276 | void arm_std_f32( |
---|
6277 | float32_t * pSrc, |
---|
6278 | uint32_t blockSize, |
---|
6279 | float32_t * pResult); |
---|
6280 | |
---|
6281 | |
---|
6282 | /** |
---|
6283 | * @brief Standard deviation of the elements of a Q31 vector. |
---|
6284 | * @param[in] pSrc is input pointer |
---|
6285 | * @param[in] blockSize is the number of samples to process |
---|
6286 | * @param[out] pResult is output value. |
---|
6287 | */ |
---|
6288 | void arm_std_q31( |
---|
6289 | q31_t * pSrc, |
---|
6290 | uint32_t blockSize, |
---|
6291 | q31_t * pResult); |
---|
6292 | |
---|
6293 | |
---|
6294 | /** |
---|
6295 | * @brief Standard deviation of the elements of a Q15 vector. |
---|
6296 | * @param[in] pSrc is input pointer |
---|
6297 | * @param[in] blockSize is the number of samples to process |
---|
6298 | * @param[out] pResult is output value. |
---|
6299 | */ |
---|
6300 | void arm_std_q15( |
---|
6301 | q15_t * pSrc, |
---|
6302 | uint32_t blockSize, |
---|
6303 | q15_t * pResult); |
---|
6304 | |
---|
6305 | |
---|
6306 | /** |
---|
6307 | * @brief Floating-point complex magnitude |
---|
6308 | * @param[in] pSrc points to the complex input vector |
---|
6309 | * @param[out] pDst points to the real output vector |
---|
6310 | * @param[in] numSamples number of complex samples in the input vector |
---|
6311 | */ |
---|
6312 | void arm_cmplx_mag_f32( |
---|
6313 | float32_t * pSrc, |
---|
6314 | float32_t * pDst, |
---|
6315 | uint32_t numSamples); |
---|
6316 | |
---|
6317 | |
---|
6318 | /** |
---|
6319 | * @brief Q31 complex magnitude |
---|
6320 | * @param[in] pSrc points to the complex input vector |
---|
6321 | * @param[out] pDst points to the real output vector |
---|
6322 | * @param[in] numSamples number of complex samples in the input vector |
---|
6323 | */ |
---|
6324 | void arm_cmplx_mag_q31( |
---|
6325 | q31_t * pSrc, |
---|
6326 | q31_t * pDst, |
---|
6327 | uint32_t numSamples); |
---|
6328 | |
---|
6329 | |
---|
6330 | /** |
---|
6331 | * @brief Q15 complex magnitude |
---|
6332 | * @param[in] pSrc points to the complex input vector |
---|
6333 | * @param[out] pDst points to the real output vector |
---|
6334 | * @param[in] numSamples number of complex samples in the input vector |
---|
6335 | */ |
---|
6336 | void arm_cmplx_mag_q15( |
---|
6337 | q15_t * pSrc, |
---|
6338 | q15_t * pDst, |
---|
6339 | uint32_t numSamples); |
---|
6340 | |
---|
6341 | |
---|
6342 | /** |
---|
6343 | * @brief Q15 complex dot product |
---|
6344 | * @param[in] pSrcA points to the first input vector |
---|
6345 | * @param[in] pSrcB points to the second input vector |
---|
6346 | * @param[in] numSamples number of complex samples in each vector |
---|
6347 | * @param[out] realResult real part of the result returned here |
---|
6348 | * @param[out] imagResult imaginary part of the result returned here |
---|
6349 | */ |
---|
6350 | void arm_cmplx_dot_prod_q15( |
---|
6351 | q15_t * pSrcA, |
---|
6352 | q15_t * pSrcB, |
---|
6353 | uint32_t numSamples, |
---|
6354 | q31_t * realResult, |
---|
6355 | q31_t * imagResult); |
---|
6356 | |
---|
6357 | |
---|
6358 | /** |
---|
6359 | * @brief Q31 complex dot product |
---|
6360 | * @param[in] pSrcA points to the first input vector |
---|
6361 | * @param[in] pSrcB points to the second input vector |
---|
6362 | * @param[in] numSamples number of complex samples in each vector |
---|
6363 | * @param[out] realResult real part of the result returned here |
---|
6364 | * @param[out] imagResult imaginary part of the result returned here |
---|
6365 | */ |
---|
6366 | void arm_cmplx_dot_prod_q31( |
---|
6367 | q31_t * pSrcA, |
---|
6368 | q31_t * pSrcB, |
---|
6369 | uint32_t numSamples, |
---|
6370 | q63_t * realResult, |
---|
6371 | q63_t * imagResult); |
---|
6372 | |
---|
6373 | |
---|
6374 | /** |
---|
6375 | * @brief Floating-point complex dot product |
---|
6376 | * @param[in] pSrcA points to the first input vector |
---|
6377 | * @param[in] pSrcB points to the second input vector |
---|
6378 | * @param[in] numSamples number of complex samples in each vector |
---|
6379 | * @param[out] realResult real part of the result returned here |
---|
6380 | * @param[out] imagResult imaginary part of the result returned here |
---|
6381 | */ |
---|
6382 | void arm_cmplx_dot_prod_f32( |
---|
6383 | float32_t * pSrcA, |
---|
6384 | float32_t * pSrcB, |
---|
6385 | uint32_t numSamples, |
---|
6386 | float32_t * realResult, |
---|
6387 | float32_t * imagResult); |
---|
6388 | |
---|
6389 | |
---|
6390 | /** |
---|
6391 | * @brief Q15 complex-by-real multiplication |
---|
6392 | * @param[in] pSrcCmplx points to the complex input vector |
---|
6393 | * @param[in] pSrcReal points to the real input vector |
---|
6394 | * @param[out] pCmplxDst points to the complex output vector |
---|
6395 | * @param[in] numSamples number of samples in each vector |
---|
6396 | */ |
---|
6397 | void arm_cmplx_mult_real_q15( |
---|
6398 | q15_t * pSrcCmplx, |
---|
6399 | q15_t * pSrcReal, |
---|
6400 | q15_t * pCmplxDst, |
---|
6401 | uint32_t numSamples); |
---|
6402 | |
---|
6403 | |
---|
6404 | /** |
---|
6405 | * @brief Q31 complex-by-real multiplication |
---|
6406 | * @param[in] pSrcCmplx points to the complex input vector |
---|
6407 | * @param[in] pSrcReal points to the real input vector |
---|
6408 | * @param[out] pCmplxDst points to the complex output vector |
---|
6409 | * @param[in] numSamples number of samples in each vector |
---|
6410 | */ |
---|
6411 | void arm_cmplx_mult_real_q31( |
---|
6412 | q31_t * pSrcCmplx, |
---|
6413 | q31_t * pSrcReal, |
---|
6414 | q31_t * pCmplxDst, |
---|
6415 | uint32_t numSamples); |
---|
6416 | |
---|
6417 | |
---|
6418 | /** |
---|
6419 | * @brief Floating-point complex-by-real multiplication |
---|
6420 | * @param[in] pSrcCmplx points to the complex input vector |
---|
6421 | * @param[in] pSrcReal points to the real input vector |
---|
6422 | * @param[out] pCmplxDst points to the complex output vector |
---|
6423 | * @param[in] numSamples number of samples in each vector |
---|
6424 | */ |
---|
6425 | void arm_cmplx_mult_real_f32( |
---|
6426 | float32_t * pSrcCmplx, |
---|
6427 | float32_t * pSrcReal, |
---|
6428 | float32_t * pCmplxDst, |
---|
6429 | uint32_t numSamples); |
---|
6430 | |
---|
6431 | |
---|
6432 | /** |
---|
6433 | * @brief Minimum value of a Q7 vector. |
---|
6434 | * @param[in] pSrc is input pointer |
---|
6435 | * @param[in] blockSize is the number of samples to process |
---|
6436 | * @param[out] result is output pointer |
---|
6437 | * @param[in] index is the array index of the minimum value in the input buffer. |
---|
6438 | */ |
---|
6439 | void arm_min_q7( |
---|
6440 | q7_t * pSrc, |
---|
6441 | uint32_t blockSize, |
---|
6442 | q7_t * result, |
---|
6443 | uint32_t * index); |
---|
6444 | |
---|
6445 | |
---|
6446 | /** |
---|
6447 | * @brief Minimum value of a Q15 vector. |
---|
6448 | * @param[in] pSrc is input pointer |
---|
6449 | * @param[in] blockSize is the number of samples to process |
---|
6450 | * @param[out] pResult is output pointer |
---|
6451 | * @param[in] pIndex is the array index of the minimum value in the input buffer. |
---|
6452 | */ |
---|
6453 | void arm_min_q15( |
---|
6454 | q15_t * pSrc, |
---|
6455 | uint32_t blockSize, |
---|
6456 | q15_t * pResult, |
---|
6457 | uint32_t * pIndex); |
---|
6458 | |
---|
6459 | |
---|
6460 | /** |
---|
6461 | * @brief Minimum value of a Q31 vector. |
---|
6462 | * @param[in] pSrc is input pointer |
---|
6463 | * @param[in] blockSize is the number of samples to process |
---|
6464 | * @param[out] pResult is output pointer |
---|
6465 | * @param[out] pIndex is the array index of the minimum value in the input buffer. |
---|
6466 | */ |
---|
6467 | void arm_min_q31( |
---|
6468 | q31_t * pSrc, |
---|
6469 | uint32_t blockSize, |
---|
6470 | q31_t * pResult, |
---|
6471 | uint32_t * pIndex); |
---|
6472 | |
---|
6473 | |
---|
6474 | /** |
---|
6475 | * @brief Minimum value of a floating-point vector. |
---|
6476 | * @param[in] pSrc is input pointer |
---|
6477 | * @param[in] blockSize is the number of samples to process |
---|
6478 | * @param[out] pResult is output pointer |
---|
6479 | * @param[out] pIndex is the array index of the minimum value in the input buffer. |
---|
6480 | */ |
---|
6481 | void arm_min_f32( |
---|
6482 | float32_t * pSrc, |
---|
6483 | uint32_t blockSize, |
---|
6484 | float32_t * pResult, |
---|
6485 | uint32_t * pIndex); |
---|
6486 | |
---|
6487 | |
---|
6488 | /** |
---|
6489 | * @brief Maximum value of a Q7 vector. |
---|
6490 | * @param[in] pSrc points to the input buffer |
---|
6491 | * @param[in] blockSize length of the input vector |
---|
6492 | * @param[out] pResult maximum value returned here |
---|
6493 | * @param[out] pIndex index of maximum value returned here |
---|
6494 | */ |
---|
6495 | void arm_max_q7( |
---|
6496 | q7_t * pSrc, |
---|
6497 | uint32_t blockSize, |
---|
6498 | q7_t * pResult, |
---|
6499 | uint32_t * pIndex); |
---|
6500 | |
---|
6501 | |
---|
6502 | /** |
---|
6503 | * @brief Maximum value of a Q15 vector. |
---|
6504 | * @param[in] pSrc points to the input buffer |
---|
6505 | * @param[in] blockSize length of the input vector |
---|
6506 | * @param[out] pResult maximum value returned here |
---|
6507 | * @param[out] pIndex index of maximum value returned here |
---|
6508 | */ |
---|
6509 | void arm_max_q15( |
---|
6510 | q15_t * pSrc, |
---|
6511 | uint32_t blockSize, |
---|
6512 | q15_t * pResult, |
---|
6513 | uint32_t * pIndex); |
---|
6514 | |
---|
6515 | |
---|
6516 | /** |
---|
6517 | * @brief Maximum value of a Q31 vector. |
---|
6518 | * @param[in] pSrc points to the input buffer |
---|
6519 | * @param[in] blockSize length of the input vector |
---|
6520 | * @param[out] pResult maximum value returned here |
---|
6521 | * @param[out] pIndex index of maximum value returned here |
---|
6522 | */ |
---|
6523 | void arm_max_q31( |
---|
6524 | q31_t * pSrc, |
---|
6525 | uint32_t blockSize, |
---|
6526 | q31_t * pResult, |
---|
6527 | uint32_t * pIndex); |
---|
6528 | |
---|
6529 | |
---|
6530 | /** |
---|
6531 | * @brief Maximum value of a floating-point vector. |
---|
6532 | * @param[in] pSrc points to the input buffer |
---|
6533 | * @param[in] blockSize length of the input vector |
---|
6534 | * @param[out] pResult maximum value returned here |
---|
6535 | * @param[out] pIndex index of maximum value returned here |
---|
6536 | */ |
---|
6537 | void arm_max_f32( |
---|
6538 | float32_t * pSrc, |
---|
6539 | uint32_t blockSize, |
---|
6540 | float32_t * pResult, |
---|
6541 | uint32_t * pIndex); |
---|
6542 | |
---|
6543 | |
---|
6544 | /** |
---|
6545 | * @brief Q15 complex-by-complex multiplication |
---|
6546 | * @param[in] pSrcA points to the first input vector |
---|
6547 | * @param[in] pSrcB points to the second input vector |
---|
6548 | * @param[out] pDst points to the output vector |
---|
6549 | * @param[in] numSamples number of complex samples in each vector |
---|
6550 | */ |
---|
6551 | void arm_cmplx_mult_cmplx_q15( |
---|
6552 | q15_t * pSrcA, |
---|
6553 | q15_t * pSrcB, |
---|
6554 | q15_t * pDst, |
---|
6555 | uint32_t numSamples); |
---|
6556 | |
---|
6557 | |
---|
6558 | /** |
---|
6559 | * @brief Q31 complex-by-complex multiplication |
---|
6560 | * @param[in] pSrcA points to the first input vector |
---|
6561 | * @param[in] pSrcB points to the second input vector |
---|
6562 | * @param[out] pDst points to the output vector |
---|
6563 | * @param[in] numSamples number of complex samples in each vector |
---|
6564 | */ |
---|
6565 | void arm_cmplx_mult_cmplx_q31( |
---|
6566 | q31_t * pSrcA, |
---|
6567 | q31_t * pSrcB, |
---|
6568 | q31_t * pDst, |
---|
6569 | uint32_t numSamples); |
---|
6570 | |
---|
6571 | |
---|
6572 | /** |
---|
6573 | * @brief Floating-point complex-by-complex multiplication |
---|
6574 | * @param[in] pSrcA points to the first input vector |
---|
6575 | * @param[in] pSrcB points to the second input vector |
---|
6576 | * @param[out] pDst points to the output vector |
---|
6577 | * @param[in] numSamples number of complex samples in each vector |
---|
6578 | */ |
---|
6579 | void arm_cmplx_mult_cmplx_f32( |
---|
6580 | float32_t * pSrcA, |
---|
6581 | float32_t * pSrcB, |
---|
6582 | float32_t * pDst, |
---|
6583 | uint32_t numSamples); |
---|
6584 | |
---|
6585 | |
---|
6586 | /** |
---|
6587 | * @brief Converts the elements of the floating-point vector to Q31 vector. |
---|
6588 | * @param[in] pSrc points to the floating-point input vector |
---|
6589 | * @param[out] pDst points to the Q31 output vector |
---|
6590 | * @param[in] blockSize length of the input vector |
---|
6591 | */ |
---|
6592 | void arm_float_to_q31( |
---|
6593 | float32_t * pSrc, |
---|
6594 | q31_t * pDst, |
---|
6595 | uint32_t blockSize); |
---|
6596 | |
---|
6597 | |
---|
6598 | /** |
---|
6599 | * @brief Converts the elements of the floating-point vector to Q15 vector. |
---|
6600 | * @param[in] pSrc points to the floating-point input vector |
---|
6601 | * @param[out] pDst points to the Q15 output vector |
---|
6602 | * @param[in] blockSize length of the input vector |
---|
6603 | */ |
---|
6604 | void arm_float_to_q15( |
---|
6605 | float32_t * pSrc, |
---|
6606 | q15_t * pDst, |
---|
6607 | uint32_t blockSize); |
---|
6608 | |
---|
6609 | |
---|
6610 | /** |
---|
6611 | * @brief Converts the elements of the floating-point vector to Q7 vector. |
---|
6612 | * @param[in] pSrc points to the floating-point input vector |
---|
6613 | * @param[out] pDst points to the Q7 output vector |
---|
6614 | * @param[in] blockSize length of the input vector |
---|
6615 | */ |
---|
6616 | void arm_float_to_q7( |
---|
6617 | float32_t * pSrc, |
---|
6618 | q7_t * pDst, |
---|
6619 | uint32_t blockSize); |
---|
6620 | |
---|
6621 | |
---|
6622 | /** |
---|
6623 | * @brief Converts the elements of the Q31 vector to Q15 vector. |
---|
6624 | * @param[in] pSrc is input pointer |
---|
6625 | * @param[out] pDst is output pointer |
---|
6626 | * @param[in] blockSize is the number of samples to process |
---|
6627 | */ |
---|
6628 | void arm_q31_to_q15( |
---|
6629 | q31_t * pSrc, |
---|
6630 | q15_t * pDst, |
---|
6631 | uint32_t blockSize); |
---|
6632 | |
---|
6633 | |
---|
6634 | /** |
---|
6635 | * @brief Converts the elements of the Q31 vector to Q7 vector. |
---|
6636 | * @param[in] pSrc is input pointer |
---|
6637 | * @param[out] pDst is output pointer |
---|
6638 | * @param[in] blockSize is the number of samples to process |
---|
6639 | */ |
---|
6640 | void arm_q31_to_q7( |
---|
6641 | q31_t * pSrc, |
---|
6642 | q7_t * pDst, |
---|
6643 | uint32_t blockSize); |
---|
6644 | |
---|
6645 | |
---|
6646 | /** |
---|
6647 | * @brief Converts the elements of the Q15 vector to floating-point vector. |
---|
6648 | * @param[in] pSrc is input pointer |
---|
6649 | * @param[out] pDst is output pointer |
---|
6650 | * @param[in] blockSize is the number of samples to process |
---|
6651 | */ |
---|
6652 | void arm_q15_to_float( |
---|
6653 | q15_t * pSrc, |
---|
6654 | float32_t * pDst, |
---|
6655 | uint32_t blockSize); |
---|
6656 | |
---|
6657 | |
---|
6658 | /** |
---|
6659 | * @brief Converts the elements of the Q15 vector to Q31 vector. |
---|
6660 | * @param[in] pSrc is input pointer |
---|
6661 | * @param[out] pDst is output pointer |
---|
6662 | * @param[in] blockSize is the number of samples to process |
---|
6663 | */ |
---|
6664 | void arm_q15_to_q31( |
---|
6665 | q15_t * pSrc, |
---|
6666 | q31_t * pDst, |
---|
6667 | uint32_t blockSize); |
---|
6668 | |
---|
6669 | |
---|
6670 | /** |
---|
6671 | * @brief Converts the elements of the Q15 vector to Q7 vector. |
---|
6672 | * @param[in] pSrc is input pointer |
---|
6673 | * @param[out] pDst is output pointer |
---|
6674 | * @param[in] blockSize is the number of samples to process |
---|
6675 | */ |
---|
6676 | void arm_q15_to_q7( |
---|
6677 | q15_t * pSrc, |
---|
6678 | q7_t * pDst, |
---|
6679 | uint32_t blockSize); |
---|
6680 | |
---|
6681 | |
---|
6682 | /** |
---|
6683 | * @ingroup groupInterpolation |
---|
6684 | */ |
---|
6685 | |
---|
6686 | /** |
---|
6687 | * @defgroup BilinearInterpolate Bilinear Interpolation |
---|
6688 | * |
---|
6689 | * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid. |
---|
6690 | * The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process |
---|
6691 | * determines values between the grid points. |
---|
6692 | * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension. |
---|
6693 | * Bilinear interpolation is often used in image processing to rescale images. |
---|
6694 | * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types. |
---|
6695 | * |
---|
6696 | * <b>Algorithm</b> |
---|
6697 | * \par |
---|
6698 | * The instance structure used by the bilinear interpolation functions describes a two dimensional data table. |
---|
6699 | * For floating-point, the instance structure is defined as: |
---|
6700 | * <pre> |
---|
6701 | * typedef struct |
---|
6702 | * { |
---|
6703 | * uint16_t numRows; |
---|
6704 | * uint16_t numCols; |
---|
6705 | * float32_t *pData; |
---|
6706 | * } arm_bilinear_interp_instance_f32; |
---|
6707 | * </pre> |
---|
6708 | * |
---|
6709 | * \par |
---|
6710 | * where <code>numRows</code> specifies the number of rows in the table; |
---|
6711 | * <code>numCols</code> specifies the number of columns in the table; |
---|
6712 | * and <code>pData</code> points to an array of size <code>numRows*numCols</code> values. |
---|
6713 | * The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes. |
---|
6714 | * That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers. |
---|
6715 | * |
---|
6716 | * \par |
---|
6717 | * Let <code>(x, y)</code> specify the desired interpolation point. Then define: |
---|
6718 | * <pre> |
---|
6719 | * XF = floor(x) |
---|
6720 | * YF = floor(y) |
---|
6721 | * </pre> |
---|
6722 | * \par |
---|
6723 | * The interpolated output point is computed as: |
---|
6724 | * <pre> |
---|
6725 | * f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF)) |
---|
6726 | * + f(XF+1, YF) * (x-XF)*(1-(y-YF)) |
---|
6727 | * + f(XF, YF+1) * (1-(x-XF))*(y-YF) |
---|
6728 | * + f(XF+1, YF+1) * (x-XF)*(y-YF) |
---|
6729 | * </pre> |
---|
6730 | * Note that the coordinates (x, y) contain integer and fractional components. |
---|
6731 | * The integer components specify which portion of the table to use while the |
---|
6732 | * fractional components control the interpolation processor. |
---|
6733 | * |
---|
6734 | * \par |
---|
6735 | * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output. |
---|
6736 | */ |
---|
6737 | |
---|
6738 | /** |
---|
6739 | * @addtogroup BilinearInterpolate |
---|
6740 | * @{ |
---|
6741 | */ |
---|
6742 | |
---|
6743 | |
---|
6744 | /** |
---|
6745 | * |
---|
6746 | * @brief Floating-point bilinear interpolation. |
---|
6747 | * @param[in,out] S points to an instance of the interpolation structure. |
---|
6748 | * @param[in] X interpolation coordinate. |
---|
6749 | * @param[in] Y interpolation coordinate. |
---|
6750 | * @return out interpolated value. |
---|
6751 | */ |
---|
6752 | static __INLINE float32_t arm_bilinear_interp_f32( |
---|
6753 | const arm_bilinear_interp_instance_f32 * S, |
---|
6754 | float32_t X, |
---|
6755 | float32_t Y) |
---|
6756 | { |
---|
6757 | float32_t out; |
---|
6758 | float32_t f00, f01, f10, f11; |
---|
6759 | float32_t *pData = S->pData; |
---|
6760 | int32_t xIndex, yIndex, index; |
---|
6761 | float32_t xdiff, ydiff; |
---|
6762 | float32_t b1, b2, b3, b4; |
---|
6763 | |
---|
6764 | xIndex = (int32_t) X; |
---|
6765 | yIndex = (int32_t) Y; |
---|
6766 | |
---|
6767 | /* Care taken for table outside boundary */ |
---|
6768 | /* Returns zero output when values are outside table boundary */ |
---|
6769 | if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 || yIndex > (S->numCols - 1)) |
---|
6770 | { |
---|
6771 | return (0); |
---|
6772 | } |
---|
6773 | |
---|
6774 | /* Calculation of index for two nearest points in X-direction */ |
---|
6775 | index = (xIndex - 1) + (yIndex - 1) * S->numCols; |
---|
6776 | |
---|
6777 | |
---|
6778 | /* Read two nearest points in X-direction */ |
---|
6779 | f00 = pData[index]; |
---|
6780 | f01 = pData[index + 1]; |
---|
6781 | |
---|
6782 | /* Calculation of index for two nearest points in Y-direction */ |
---|
6783 | index = (xIndex - 1) + (yIndex) * S->numCols; |
---|
6784 | |
---|
6785 | |
---|
6786 | /* Read two nearest points in Y-direction */ |
---|
6787 | f10 = pData[index]; |
---|
6788 | f11 = pData[index + 1]; |
---|
6789 | |
---|
6790 | /* Calculation of intermediate values */ |
---|
6791 | b1 = f00; |
---|
6792 | b2 = f01 - f00; |
---|
6793 | b3 = f10 - f00; |
---|
6794 | b4 = f00 - f01 - f10 + f11; |
---|
6795 | |
---|
6796 | /* Calculation of fractional part in X */ |
---|
6797 | xdiff = X - xIndex; |
---|
6798 | |
---|
6799 | /* Calculation of fractional part in Y */ |
---|
6800 | ydiff = Y - yIndex; |
---|
6801 | |
---|
6802 | /* Calculation of bi-linear interpolated output */ |
---|
6803 | out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff; |
---|
6804 | |
---|
6805 | /* return to application */ |
---|
6806 | return (out); |
---|
6807 | } |
---|
6808 | |
---|
6809 | |
---|
6810 | /** |
---|
6811 | * |
---|
6812 | * @brief Q31 bilinear interpolation. |
---|
6813 | * @param[in,out] S points to an instance of the interpolation structure. |
---|
6814 | * @param[in] X interpolation coordinate in 12.20 format. |
---|
6815 | * @param[in] Y interpolation coordinate in 12.20 format. |
---|
6816 | * @return out interpolated value. |
---|
6817 | */ |
---|
6818 | static __INLINE q31_t arm_bilinear_interp_q31( |
---|
6819 | arm_bilinear_interp_instance_q31 * S, |
---|
6820 | q31_t X, |
---|
6821 | q31_t Y) |
---|
6822 | { |
---|
6823 | q31_t out; /* Temporary output */ |
---|
6824 | q31_t acc = 0; /* output */ |
---|
6825 | q31_t xfract, yfract; /* X, Y fractional parts */ |
---|
6826 | q31_t x1, x2, y1, y2; /* Nearest output values */ |
---|
6827 | int32_t rI, cI; /* Row and column indices */ |
---|
6828 | q31_t *pYData = S->pData; /* pointer to output table values */ |
---|
6829 | uint32_t nCols = S->numCols; /* num of rows */ |
---|
6830 | |
---|
6831 | /* Input is in 12.20 format */ |
---|
6832 | /* 12 bits for the table index */ |
---|
6833 | /* Index value calculation */ |
---|
6834 | rI = ((X & (q31_t)0xFFF00000) >> 20); |
---|
6835 | |
---|
6836 | /* Input is in 12.20 format */ |
---|
6837 | /* 12 bits for the table index */ |
---|
6838 | /* Index value calculation */ |
---|
6839 | cI = ((Y & (q31_t)0xFFF00000) >> 20); |
---|
6840 | |
---|
6841 | /* Care taken for table outside boundary */ |
---|
6842 | /* Returns zero output when values are outside table boundary */ |
---|
6843 | if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) |
---|
6844 | { |
---|
6845 | return (0); |
---|
6846 | } |
---|
6847 | |
---|
6848 | /* 20 bits for the fractional part */ |
---|
6849 | /* shift left xfract by 11 to keep 1.31 format */ |
---|
6850 | xfract = (X & 0x000FFFFF) << 11u; |
---|
6851 | |
---|
6852 | /* Read two nearest output values from the index */ |
---|
6853 | x1 = pYData[(rI) + (int32_t)nCols * (cI) ]; |
---|
6854 | x2 = pYData[(rI) + (int32_t)nCols * (cI) + 1]; |
---|
6855 | |
---|
6856 | /* 20 bits for the fractional part */ |
---|
6857 | /* shift left yfract by 11 to keep 1.31 format */ |
---|
6858 | yfract = (Y & 0x000FFFFF) << 11u; |
---|
6859 | |
---|
6860 | /* Read two nearest output values from the index */ |
---|
6861 | y1 = pYData[(rI) + (int32_t)nCols * (cI + 1) ]; |
---|
6862 | y2 = pYData[(rI) + (int32_t)nCols * (cI + 1) + 1]; |
---|
6863 | |
---|
6864 | /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */ |
---|
6865 | out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32)); |
---|
6866 | acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32)); |
---|
6867 | |
---|
6868 | /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */ |
---|
6869 | out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32)); |
---|
6870 | acc += ((q31_t) ((q63_t) out * (xfract) >> 32)); |
---|
6871 | |
---|
6872 | /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */ |
---|
6873 | out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32)); |
---|
6874 | acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); |
---|
6875 | |
---|
6876 | /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */ |
---|
6877 | out = ((q31_t) ((q63_t) y2 * (xfract) >> 32)); |
---|
6878 | acc += ((q31_t) ((q63_t) out * (yfract) >> 32)); |
---|
6879 | |
---|
6880 | /* Convert acc to 1.31(q31) format */ |
---|
6881 | return ((q31_t)(acc << 2)); |
---|
6882 | } |
---|
6883 | |
---|
6884 | |
---|
6885 | /** |
---|
6886 | * @brief Q15 bilinear interpolation. |
---|
6887 | * @param[in,out] S points to an instance of the interpolation structure. |
---|
6888 | * @param[in] X interpolation coordinate in 12.20 format. |
---|
6889 | * @param[in] Y interpolation coordinate in 12.20 format. |
---|
6890 | * @return out interpolated value. |
---|
6891 | */ |
---|
6892 | static __INLINE q15_t arm_bilinear_interp_q15( |
---|
6893 | arm_bilinear_interp_instance_q15 * S, |
---|
6894 | q31_t X, |
---|
6895 | q31_t Y) |
---|
6896 | { |
---|
6897 | q63_t acc = 0; /* output */ |
---|
6898 | q31_t out; /* Temporary output */ |
---|
6899 | q15_t x1, x2, y1, y2; /* Nearest output values */ |
---|
6900 | q31_t xfract, yfract; /* X, Y fractional parts */ |
---|
6901 | int32_t rI, cI; /* Row and column indices */ |
---|
6902 | q15_t *pYData = S->pData; /* pointer to output table values */ |
---|
6903 | uint32_t nCols = S->numCols; /* num of rows */ |
---|
6904 | |
---|
6905 | /* Input is in 12.20 format */ |
---|
6906 | /* 12 bits for the table index */ |
---|
6907 | /* Index value calculation */ |
---|
6908 | rI = ((X & (q31_t)0xFFF00000) >> 20); |
---|
6909 | |
---|
6910 | /* Input is in 12.20 format */ |
---|
6911 | /* 12 bits for the table index */ |
---|
6912 | /* Index value calculation */ |
---|
6913 | cI = ((Y & (q31_t)0xFFF00000) >> 20); |
---|
6914 | |
---|
6915 | /* Care taken for table outside boundary */ |
---|
6916 | /* Returns zero output when values are outside table boundary */ |
---|
6917 | if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) |
---|
6918 | { |
---|
6919 | return (0); |
---|
6920 | } |
---|
6921 | |
---|
6922 | /* 20 bits for the fractional part */ |
---|
6923 | /* xfract should be in 12.20 format */ |
---|
6924 | xfract = (X & 0x000FFFFF); |
---|
6925 | |
---|
6926 | /* Read two nearest output values from the index */ |
---|
6927 | x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ]; |
---|
6928 | x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1]; |
---|
6929 | |
---|
6930 | /* 20 bits for the fractional part */ |
---|
6931 | /* yfract should be in 12.20 format */ |
---|
6932 | yfract = (Y & 0x000FFFFF); |
---|
6933 | |
---|
6934 | /* Read two nearest output values from the index */ |
---|
6935 | y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ]; |
---|
6936 | y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1]; |
---|
6937 | |
---|
6938 | /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */ |
---|
6939 | |
---|
6940 | /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */ |
---|
6941 | /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */ |
---|
6942 | out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u); |
---|
6943 | acc = ((q63_t) out * (0xFFFFF - yfract)); |
---|
6944 | |
---|
6945 | /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */ |
---|
6946 | out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u); |
---|
6947 | acc += ((q63_t) out * (xfract)); |
---|
6948 | |
---|
6949 | /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */ |
---|
6950 | out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u); |
---|
6951 | acc += ((q63_t) out * (yfract)); |
---|
6952 | |
---|
6953 | /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */ |
---|
6954 | out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u); |
---|
6955 | acc += ((q63_t) out * (yfract)); |
---|
6956 | |
---|
6957 | /* acc is in 13.51 format and down shift acc by 36 times */ |
---|
6958 | /* Convert out to 1.15 format */ |
---|
6959 | return ((q15_t)(acc >> 36)); |
---|
6960 | } |
---|
6961 | |
---|
6962 | |
---|
6963 | /** |
---|
6964 | * @brief Q7 bilinear interpolation. |
---|
6965 | * @param[in,out] S points to an instance of the interpolation structure. |
---|
6966 | * @param[in] X interpolation coordinate in 12.20 format. |
---|
6967 | * @param[in] Y interpolation coordinate in 12.20 format. |
---|
6968 | * @return out interpolated value. |
---|
6969 | */ |
---|
6970 | static __INLINE q7_t arm_bilinear_interp_q7( |
---|
6971 | arm_bilinear_interp_instance_q7 * S, |
---|
6972 | q31_t X, |
---|
6973 | q31_t Y) |
---|
6974 | { |
---|
6975 | q63_t acc = 0; /* output */ |
---|
6976 | q31_t out; /* Temporary output */ |
---|
6977 | q31_t xfract, yfract; /* X, Y fractional parts */ |
---|
6978 | q7_t x1, x2, y1, y2; /* Nearest output values */ |
---|
6979 | int32_t rI, cI; /* Row and column indices */ |
---|
6980 | q7_t *pYData = S->pData; /* pointer to output table values */ |
---|
6981 | uint32_t nCols = S->numCols; /* num of rows */ |
---|
6982 | |
---|
6983 | /* Input is in 12.20 format */ |
---|
6984 | /* 12 bits for the table index */ |
---|
6985 | /* Index value calculation */ |
---|
6986 | rI = ((X & (q31_t)0xFFF00000) >> 20); |
---|
6987 | |
---|
6988 | /* Input is in 12.20 format */ |
---|
6989 | /* 12 bits for the table index */ |
---|
6990 | /* Index value calculation */ |
---|
6991 | cI = ((Y & (q31_t)0xFFF00000) >> 20); |
---|
6992 | |
---|
6993 | /* Care taken for table outside boundary */ |
---|
6994 | /* Returns zero output when values are outside table boundary */ |
---|
6995 | if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1)) |
---|
6996 | { |
---|
6997 | return (0); |
---|
6998 | } |
---|
6999 | |
---|
7000 | /* 20 bits for the fractional part */ |
---|
7001 | /* xfract should be in 12.20 format */ |
---|
7002 | xfract = (X & (q31_t)0x000FFFFF); |
---|
7003 | |
---|
7004 | /* Read two nearest output values from the index */ |
---|
7005 | x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ]; |
---|
7006 | x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1]; |
---|
7007 | |
---|
7008 | /* 20 bits for the fractional part */ |
---|
7009 | /* yfract should be in 12.20 format */ |
---|
7010 | yfract = (Y & (q31_t)0x000FFFFF); |
---|
7011 | |
---|
7012 | /* Read two nearest output values from the index */ |
---|
7013 | y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ]; |
---|
7014 | y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1]; |
---|
7015 | |
---|
7016 | /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */ |
---|
7017 | out = ((x1 * (0xFFFFF - xfract))); |
---|
7018 | acc = (((q63_t) out * (0xFFFFF - yfract))); |
---|
7019 | |
---|
7020 | /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */ |
---|
7021 | out = ((x2 * (0xFFFFF - yfract))); |
---|
7022 | acc += (((q63_t) out * (xfract))); |
---|
7023 | |
---|
7024 | /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */ |
---|
7025 | out = ((y1 * (0xFFFFF - xfract))); |
---|
7026 | acc += (((q63_t) out * (yfract))); |
---|
7027 | |
---|
7028 | /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */ |
---|
7029 | out = ((y2 * (yfract))); |
---|
7030 | acc += (((q63_t) out * (xfract))); |
---|
7031 | |
---|
7032 | /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */ |
---|
7033 | return ((q7_t)(acc >> 40)); |
---|
7034 | } |
---|
7035 | |
---|
7036 | /** |
---|
7037 | * @} end of BilinearInterpolate group |
---|
7038 | */ |
---|
7039 | |
---|
7040 | |
---|
7041 | /* SMMLAR */ |
---|
7042 | #define multAcc_32x32_keep32_R(a, x, y) \ |
---|
7043 | a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32) |
---|
7044 | |
---|
7045 | /* SMMLSR */ |
---|
7046 | #define multSub_32x32_keep32_R(a, x, y) \ |
---|
7047 | a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32) |
---|
7048 | |
---|
7049 | /* SMMULR */ |
---|
7050 | #define mult_32x32_keep32_R(a, x, y) \ |
---|
7051 | a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32) |
---|
7052 | |
---|
7053 | /* SMMLA */ |
---|
7054 | #define multAcc_32x32_keep32(a, x, y) \ |
---|
7055 | a += (q31_t) (((q63_t) x * y) >> 32) |
---|
7056 | |
---|
7057 | /* SMMLS */ |
---|
7058 | #define multSub_32x32_keep32(a, x, y) \ |
---|
7059 | a -= (q31_t) (((q63_t) x * y) >> 32) |
---|
7060 | |
---|
7061 | /* SMMUL */ |
---|
7062 | #define mult_32x32_keep32(a, x, y) \ |
---|
7063 | a = (q31_t) (((q63_t) x * y ) >> 32) |
---|
7064 | |
---|
7065 | |
---|
7066 | #if defined ( __CC_ARM ) |
---|
7067 | /* Enter low optimization region - place directly above function definition */ |
---|
7068 | #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7) |
---|
7069 | #define LOW_OPTIMIZATION_ENTER \ |
---|
7070 | _Pragma ("push") \ |
---|
7071 | _Pragma ("O1") |
---|
7072 | #else |
---|
7073 | #define LOW_OPTIMIZATION_ENTER |
---|
7074 | #endif |
---|
7075 | |
---|
7076 | /* Exit low optimization region - place directly after end of function definition */ |
---|
7077 | #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7) |
---|
7078 | #define LOW_OPTIMIZATION_EXIT \ |
---|
7079 | _Pragma ("pop") |
---|
7080 | #else |
---|
7081 | #define LOW_OPTIMIZATION_EXIT |
---|
7082 | #endif |
---|
7083 | |
---|
7084 | /* Enter low optimization region - place directly above function definition */ |
---|
7085 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
---|
7086 | |
---|
7087 | /* Exit low optimization region - place directly after end of function definition */ |
---|
7088 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
---|
7089 | |
---|
7090 | #elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) |
---|
7091 | #define LOW_OPTIMIZATION_ENTER |
---|
7092 | #define LOW_OPTIMIZATION_EXIT |
---|
7093 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
---|
7094 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
---|
7095 | |
---|
7096 | #elif defined(__GNUC__) |
---|
7097 | #define LOW_OPTIMIZATION_ENTER __attribute__(( optimize("-O1") )) |
---|
7098 | #define LOW_OPTIMIZATION_EXIT |
---|
7099 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
---|
7100 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
---|
7101 | |
---|
7102 | #elif defined(__ICCARM__) |
---|
7103 | /* Enter low optimization region - place directly above function definition */ |
---|
7104 | #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7) |
---|
7105 | #define LOW_OPTIMIZATION_ENTER \ |
---|
7106 | _Pragma ("optimize=low") |
---|
7107 | #else |
---|
7108 | #define LOW_OPTIMIZATION_ENTER |
---|
7109 | #endif |
---|
7110 | |
---|
7111 | /* Exit low optimization region - place directly after end of function definition */ |
---|
7112 | #define LOW_OPTIMIZATION_EXIT |
---|
7113 | |
---|
7114 | /* Enter low optimization region - place directly above function definition */ |
---|
7115 | #if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7) |
---|
7116 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \ |
---|
7117 | _Pragma ("optimize=low") |
---|
7118 | #else |
---|
7119 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
---|
7120 | #endif |
---|
7121 | |
---|
7122 | /* Exit low optimization region - place directly after end of function definition */ |
---|
7123 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
---|
7124 | |
---|
7125 | #elif defined(__CSMC__) |
---|
7126 | #define LOW_OPTIMIZATION_ENTER |
---|
7127 | #define LOW_OPTIMIZATION_EXIT |
---|
7128 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
---|
7129 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
---|
7130 | |
---|
7131 | #elif defined(__TASKING__) |
---|
7132 | #define LOW_OPTIMIZATION_ENTER |
---|
7133 | #define LOW_OPTIMIZATION_EXIT |
---|
7134 | #define IAR_ONLY_LOW_OPTIMIZATION_ENTER |
---|
7135 | #define IAR_ONLY_LOW_OPTIMIZATION_EXIT |
---|
7136 | |
---|
7137 | #endif |
---|
7138 | |
---|
7139 | |
---|
7140 | #ifdef __cplusplus |
---|
7141 | } |
---|
7142 | #endif |
---|
7143 | |
---|
7144 | |
---|
7145 | #if defined ( __GNUC__ ) |
---|
7146 | #pragma GCC diagnostic pop |
---|
7147 | #endif |
---|
7148 | |
---|
7149 | #endif /* _ARM_MATH_H */ |
---|
7150 | |
---|
7151 | /** |
---|
7152 | * |
---|
7153 | * End of file. |
---|
7154 | */ |
---|