source: trunk/firmware/Drivers/CMSIS/Include/cmsis_armcc_V6.h @ 6

Last change on this file since 6 was 6, checked in by f.jahn, 3 months ago
File size: 53.8 KB
Line 
1/**************************************************************************//**
2 * @file     cmsis_armcc_V6.h
3 * @brief    CMSIS Cortex-M Core Function/Instruction Header File
4 * @version  V4.30
5 * @date     20. October 2015
6 ******************************************************************************/
7/* Copyright (c) 2009 - 2015 ARM LIMITED
8
9   All rights reserved.
10   Redistribution and use in source and binary forms, with or without
11   modification, are permitted provided that the following conditions are met:
12   - Redistributions of source code must retain the above copyright
13     notice, this list of conditions and the following disclaimer.
14   - Redistributions in binary form must reproduce the above copyright
15     notice, this list of conditions and the following disclaimer in the
16     documentation and/or other materials provided with the distribution.
17   - Neither the name of ARM nor the names of its contributors may be used
18     to endorse or promote products derived from this software without
19     specific prior written permission.
20   *
21   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24   ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
25   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31   POSSIBILITY OF SUCH DAMAGE.
32   ---------------------------------------------------------------------------*/
33
34
35#ifndef __CMSIS_ARMCC_V6_H
36#define __CMSIS_ARMCC_V6_H
37
38
39/* ###########################  Core Function Access  ########################### */
40/** \ingroup  CMSIS_Core_FunctionInterface
41    \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
42  @{
43 */
44
45/**
46  \brief   Enable IRQ Interrupts
47  \details Enables IRQ interrupts by clearing the I-bit in the CPSR.
48           Can only be executed in Privileged modes.
49 */
50__attribute__((always_inline)) __STATIC_INLINE void __enable_irq(void)
51{
52  __ASM volatile ("cpsie i" : : : "memory");
53}
54
55
56/**
57  \brief   Disable IRQ Interrupts
58  \details Disables IRQ interrupts by setting the I-bit in the CPSR.
59           Can only be executed in Privileged modes.
60 */
61__attribute__((always_inline)) __STATIC_INLINE void __disable_irq(void)
62{
63  __ASM volatile ("cpsid i" : : : "memory");
64}
65
66
67/**
68  \brief   Get Control Register
69  \details Returns the content of the Control Register.
70  \return               Control Register value
71 */
72__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_CONTROL(void)
73{
74  uint32_t result;
75
76  __ASM volatile ("MRS %0, control" : "=r" (result) );
77  return(result);
78}
79
80
81#if  (__ARM_FEATURE_CMSE == 3U)
82/**
83  \brief   Get Control Register (non-secure)
84  \details Returns the content of the non-secure Control Register when in secure mode.
85  \return               non-secure Control Register value
86 */
87__attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_CONTROL_NS(void)
88{
89  uint32_t result;
90
91  __ASM volatile ("MRS %0, control_ns" : "=r" (result) );
92  return(result);
93}
94#endif
95
96
97/**
98  \brief   Set Control Register
99  \details Writes the given value to the Control Register.
100  \param [in]    control  Control Register value to set
101 */
102__attribute__((always_inline)) __STATIC_INLINE void __set_CONTROL(uint32_t control)
103{
104  __ASM volatile ("MSR control, %0" : : "r" (control) : "memory");
105}
106
107
108#if  (__ARM_FEATURE_CMSE == 3U)
109/**
110  \brief   Set Control Register (non-secure)
111  \details Writes the given value to the non-secure Control Register when in secure state.
112  \param [in]    control  Control Register value to set
113 */
114__attribute__((always_inline)) __STATIC_INLINE void __TZ_set_CONTROL_NS(uint32_t control)
115{
116  __ASM volatile ("MSR control_ns, %0" : : "r" (control) : "memory");
117}
118#endif
119
120
121/**
122  \brief   Get IPSR Register
123  \details Returns the content of the IPSR Register.
124  \return               IPSR Register value
125 */
126__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_IPSR(void)
127{
128  uint32_t result;
129
130  __ASM volatile ("MRS %0, ipsr" : "=r" (result) );
131  return(result);
132}
133
134
135#if  (__ARM_FEATURE_CMSE == 3U)
136/**
137  \brief   Get IPSR Register (non-secure)
138  \details Returns the content of the non-secure IPSR Register when in secure state.
139  \return               IPSR Register value
140 */
141__attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_IPSR_NS(void)
142{
143  uint32_t result;
144
145  __ASM volatile ("MRS %0, ipsr_ns" : "=r" (result) );
146  return(result);
147}
148#endif
149
150
151/**
152  \brief   Get APSR Register
153  \details Returns the content of the APSR Register.
154  \return               APSR Register value
155 */
156__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_APSR(void)
157{
158  uint32_t result;
159
160  __ASM volatile ("MRS %0, apsr" : "=r" (result) );
161  return(result);
162}
163
164
165#if  (__ARM_FEATURE_CMSE == 3U)
166/**
167  \brief   Get APSR Register (non-secure)
168  \details Returns the content of the non-secure APSR Register when in secure state.
169  \return               APSR Register value
170 */
171__attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_APSR_NS(void)
172{
173  uint32_t result;
174
175  __ASM volatile ("MRS %0, apsr_ns" : "=r" (result) );
176  return(result);
177}
178#endif
179
180
181/**
182  \brief   Get xPSR Register
183  \details Returns the content of the xPSR Register.
184  \return               xPSR Register value
185 */
186__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_xPSR(void)
187{
188  uint32_t result;
189
190  __ASM volatile ("MRS %0, xpsr" : "=r" (result) );
191  return(result);
192}
193
194
195#if  (__ARM_FEATURE_CMSE == 3U)
196/**
197  \brief   Get xPSR Register (non-secure)
198  \details Returns the content of the non-secure xPSR Register when in secure state.
199  \return               xPSR Register value
200 */
201__attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_xPSR_NS(void)
202{
203  uint32_t result;
204
205  __ASM volatile ("MRS %0, xpsr_ns" : "=r" (result) );
206  return(result);
207}
208#endif
209
210
211/**
212  \brief   Get Process Stack Pointer
213  \details Returns the current value of the Process Stack Pointer (PSP).
214  \return               PSP Register value
215 */
216__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_PSP(void)
217{
218  register uint32_t result;
219
220  __ASM volatile ("MRS %0, psp"  : "=r" (result) );
221  return(result);
222}
223
224
225#if  (__ARM_FEATURE_CMSE == 3U)
226/**
227  \brief   Get Process Stack Pointer (non-secure)
228  \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state.
229  \return               PSP Register value
230 */
231__attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_PSP_NS(void)
232{
233  register uint32_t result;
234
235  __ASM volatile ("MRS %0, psp_ns"  : "=r" (result) );
236  return(result);
237}
238#endif
239
240
241/**
242  \brief   Set Process Stack Pointer
243  \details Assigns the given value to the Process Stack Pointer (PSP).
244  \param [in]    topOfProcStack  Process Stack Pointer value to set
245 */
246__attribute__((always_inline)) __STATIC_INLINE void __set_PSP(uint32_t topOfProcStack)
247{
248  __ASM volatile ("MSR psp, %0" : : "r" (topOfProcStack) : "sp");
249}
250
251
252#if  (__ARM_FEATURE_CMSE == 3U)
253/**
254  \brief   Set Process Stack Pointer (non-secure)
255  \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state.
256  \param [in]    topOfProcStack  Process Stack Pointer value to set
257 */
258__attribute__((always_inline)) __STATIC_INLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack)
259{
260  __ASM volatile ("MSR psp_ns, %0" : : "r" (topOfProcStack) : "sp");
261}
262#endif
263
264
265/**
266  \brief   Get Main Stack Pointer
267  \details Returns the current value of the Main Stack Pointer (MSP).
268  \return               MSP Register value
269 */
270__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_MSP(void)
271{
272  register uint32_t result;
273
274  __ASM volatile ("MRS %0, msp" : "=r" (result) );
275  return(result);
276}
277
278
279#if  (__ARM_FEATURE_CMSE == 3U)
280/**
281  \brief   Get Main Stack Pointer (non-secure)
282  \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state.
283  \return               MSP Register value
284 */
285__attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_MSP_NS(void)
286{
287  register uint32_t result;
288
289  __ASM volatile ("MRS %0, msp_ns" : "=r" (result) );
290  return(result);
291}
292#endif
293
294
295/**
296  \brief   Set Main Stack Pointer
297  \details Assigns the given value to the Main Stack Pointer (MSP).
298  \param [in]    topOfMainStack  Main Stack Pointer value to set
299 */
300__attribute__((always_inline)) __STATIC_INLINE void __set_MSP(uint32_t topOfMainStack)
301{
302  __ASM volatile ("MSR msp, %0" : : "r" (topOfMainStack) : "sp");
303}
304
305
306#if  (__ARM_FEATURE_CMSE == 3U)
307/**
308  \brief   Set Main Stack Pointer (non-secure)
309  \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state.
310  \param [in]    topOfMainStack  Main Stack Pointer value to set
311 */
312__attribute__((always_inline)) __STATIC_INLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack)
313{
314  __ASM volatile ("MSR msp_ns, %0" : : "r" (topOfMainStack) : "sp");
315}
316#endif
317
318
319/**
320  \brief   Get Priority Mask
321  \details Returns the current state of the priority mask bit from the Priority Mask Register.
322  \return               Priority Mask value
323 */
324__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_PRIMASK(void)
325{
326  uint32_t result;
327
328  __ASM volatile ("MRS %0, primask" : "=r" (result) );
329  return(result);
330}
331
332
333#if  (__ARM_FEATURE_CMSE == 3U)
334/**
335  \brief   Get Priority Mask (non-secure)
336  \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state.
337  \return               Priority Mask value
338 */
339__attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_PRIMASK_NS(void)
340{
341  uint32_t result;
342
343  __ASM volatile ("MRS %0, primask_ns" : "=r" (result) );
344  return(result);
345}
346#endif
347
348
349/**
350  \brief   Set Priority Mask
351  \details Assigns the given value to the Priority Mask Register.
352  \param [in]    priMask  Priority Mask
353 */
354__attribute__((always_inline)) __STATIC_INLINE void __set_PRIMASK(uint32_t priMask)
355{
356  __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory");
357}
358
359
360#if  (__ARM_FEATURE_CMSE == 3U)
361/**
362  \brief   Set Priority Mask (non-secure)
363  \details Assigns the given value to the non-secure Priority Mask Register when in secure state.
364  \param [in]    priMask  Priority Mask
365 */
366__attribute__((always_inline)) __STATIC_INLINE void __TZ_set_PRIMASK_NS(uint32_t priMask)
367{
368  __ASM volatile ("MSR primask_ns, %0" : : "r" (priMask) : "memory");
369}
370#endif
371
372
373#if ((__ARM_ARCH_7M__ == 1U) || (__ARM_ARCH_7EM__ == 1U) || (__ARM_ARCH_8M__ == 1U))  /* ToDo:  ARMCC_V6: check if this is ok for cortex >=3 */
374
375/**
376  \brief   Enable FIQ
377  \details Enables FIQ interrupts by clearing the F-bit in the CPSR.
378           Can only be executed in Privileged modes.
379 */
380__attribute__((always_inline)) __STATIC_INLINE void __enable_fault_irq(void)
381{
382  __ASM volatile ("cpsie f" : : : "memory");
383}
384
385
386/**
387  \brief   Disable FIQ
388  \details Disables FIQ interrupts by setting the F-bit in the CPSR.
389           Can only be executed in Privileged modes.
390 */
391__attribute__((always_inline)) __STATIC_INLINE void __disable_fault_irq(void)
392{
393  __ASM volatile ("cpsid f" : : : "memory");
394}
395
396
397/**
398  \brief   Get Base Priority
399  \details Returns the current value of the Base Priority register.
400  \return               Base Priority register value
401 */
402__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_BASEPRI(void)
403{
404  uint32_t result;
405
406  __ASM volatile ("MRS %0, basepri" : "=r" (result) );
407  return(result);
408}
409
410
411#if  (__ARM_FEATURE_CMSE == 3U)
412/**
413  \brief   Get Base Priority (non-secure)
414  \details Returns the current value of the non-secure Base Priority register when in secure state.
415  \return               Base Priority register value
416 */
417__attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_BASEPRI_NS(void)
418{
419  uint32_t result;
420
421  __ASM volatile ("MRS %0, basepri_ns" : "=r" (result) );
422  return(result);
423}
424#endif
425
426
427/**
428  \brief   Set Base Priority
429  \details Assigns the given value to the Base Priority register.
430  \param [in]    basePri  Base Priority value to set
431 */
432__attribute__((always_inline)) __STATIC_INLINE void __set_BASEPRI(uint32_t value)
433{
434  __ASM volatile ("MSR basepri, %0" : : "r" (value) : "memory");
435}
436
437
438#if  (__ARM_FEATURE_CMSE == 3U)
439/**
440  \brief   Set Base Priority (non-secure)
441  \details Assigns the given value to the non-secure Base Priority register when in secure state.
442  \param [in]    basePri  Base Priority value to set
443 */
444__attribute__((always_inline)) __STATIC_INLINE void __TZ_set_BASEPRI_NS(uint32_t value)
445{
446  __ASM volatile ("MSR basepri_ns, %0" : : "r" (value) : "memory");
447}
448#endif
449
450
451/**
452  \brief   Set Base Priority with condition
453  \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
454           or the new value increases the BASEPRI priority level.
455  \param [in]    basePri  Base Priority value to set
456 */
457__attribute__((always_inline)) __STATIC_INLINE void __set_BASEPRI_MAX(uint32_t value)
458{
459  __ASM volatile ("MSR basepri_max, %0" : : "r" (value) : "memory");
460}
461
462
463#if  (__ARM_FEATURE_CMSE == 3U)
464/**
465  \brief   Set Base Priority with condition (non_secure)
466  \details Assigns the given value to the non-secure Base Priority register when in secure state only if BASEPRI masking is disabled,
467               or the new value increases the BASEPRI priority level.
468  \param [in]    basePri  Base Priority value to set
469 */
470__attribute__((always_inline)) __STATIC_INLINE void __TZ_set_BASEPRI_MAX_NS(uint32_t value)
471{
472  __ASM volatile ("MSR basepri_max_ns, %0" : : "r" (value) : "memory");
473}
474#endif
475
476
477/**
478  \brief   Get Fault Mask
479  \details Returns the current value of the Fault Mask register.
480  \return               Fault Mask register value
481 */
482__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_FAULTMASK(void)
483{
484  uint32_t result;
485
486  __ASM volatile ("MRS %0, faultmask" : "=r" (result) );
487  return(result);
488}
489
490
491#if  (__ARM_FEATURE_CMSE == 3U)
492/**
493  \brief   Get Fault Mask (non-secure)
494  \details Returns the current value of the non-secure Fault Mask register when in secure state.
495  \return               Fault Mask register value
496 */
497__attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_FAULTMASK_NS(void)
498{
499  uint32_t result;
500
501  __ASM volatile ("MRS %0, faultmask_ns" : "=r" (result) );
502  return(result);
503}
504#endif
505
506
507/**
508  \brief   Set Fault Mask
509  \details Assigns the given value to the Fault Mask register.
510  \param [in]    faultMask  Fault Mask value to set
511 */
512__attribute__((always_inline)) __STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask)
513{
514  __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory");
515}
516
517
518#if  (__ARM_FEATURE_CMSE == 3U)
519/**
520  \brief   Set Fault Mask (non-secure)
521  \details Assigns the given value to the non-secure Fault Mask register when in secure state.
522  \param [in]    faultMask  Fault Mask value to set
523 */
524__attribute__((always_inline)) __STATIC_INLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask)
525{
526  __ASM volatile ("MSR faultmask_ns, %0" : : "r" (faultMask) : "memory");
527}
528#endif
529
530
531#endif /* ((__ARM_ARCH_7M__ == 1U) || (__ARM_ARCH_8M__ == 1U)) */
532
533
534#if (__ARM_ARCH_8M__ == 1U)
535
536/**
537  \brief   Get Process Stack Pointer Limit
538  \details Returns the current value of the Process Stack Pointer Limit (PSPLIM).
539  \return               PSPLIM Register value
540 */
541__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_PSPLIM(void)
542{
543  register uint32_t result;
544
545  __ASM volatile ("MRS %0, psplim"  : "=r" (result) );
546  return(result);
547}
548
549
550#if  (__ARM_FEATURE_CMSE == 3U) && (__ARM_ARCH_PROFILE == 'M')     /* ToDo:  ARMCC_V6: check predefined macro for mainline */
551/**
552  \brief   Get Process Stack Pointer Limit (non-secure)
553  \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
554  \return               PSPLIM Register value
555 */
556__attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_PSPLIM_NS(void)
557{
558  register uint32_t result;
559
560  __ASM volatile ("MRS %0, psplim_ns"  : "=r" (result) );
561  return(result);
562}
563#endif
564
565
566/**
567  \brief   Set Process Stack Pointer Limit
568  \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM).
569  \param [in]    ProcStackPtrLimit  Process Stack Pointer Limit value to set
570 */
571__attribute__((always_inline)) __STATIC_INLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit)
572{
573  __ASM volatile ("MSR psplim, %0" : : "r" (ProcStackPtrLimit));
574}
575
576
577#if  (__ARM_FEATURE_CMSE == 3U) && (__ARM_ARCH_PROFILE == 'M')     /* ToDo:  ARMCC_V6: check predefined macro for mainline */
578/**
579  \brief   Set Process Stack Pointer (non-secure)
580  \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
581  \param [in]    ProcStackPtrLimit  Process Stack Pointer Limit value to set
582 */
583__attribute__((always_inline)) __STATIC_INLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)
584{
585  __ASM volatile ("MSR psplim_ns, %0\n" : : "r" (ProcStackPtrLimit));
586}
587#endif
588
589
590/**
591  \brief   Get Main Stack Pointer Limit
592  \details Returns the current value of the Main Stack Pointer Limit (MSPLIM).
593  \return               MSPLIM Register value
594 */
595__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_MSPLIM(void)
596{
597  register uint32_t result;
598
599  __ASM volatile ("MRS %0, msplim" : "=r" (result) );
600
601  return(result);
602}
603
604
605#if  (__ARM_FEATURE_CMSE == 3U) && (__ARM_ARCH_PROFILE == 'M')     /* ToDo:  ARMCC_V6: check predefined macro for mainline */
606/**
607  \brief   Get Main Stack Pointer Limit (non-secure)
608  \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state.
609  \return               MSPLIM Register value
610 */
611__attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_MSPLIM_NS(void)
612{
613  register uint32_t result;
614
615  __ASM volatile ("MRS %0, msplim_ns" : "=r" (result) );
616  return(result);
617}
618#endif
619
620
621/**
622  \brief   Set Main Stack Pointer Limit
623  \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM).
624  \param [in]    MainStackPtrLimit  Main Stack Pointer Limit value to set
625 */
626__attribute__((always_inline)) __STATIC_INLINE void __set_MSPLIM(uint32_t MainStackPtrLimit)
627{
628  __ASM volatile ("MSR msplim, %0" : : "r" (MainStackPtrLimit));
629}
630
631
632#if  (__ARM_FEATURE_CMSE == 3U) && (__ARM_ARCH_PROFILE == 'M')     /* ToDo:  ARMCC_V6: check predefined macro for mainline */
633/**
634  \brief   Set Main Stack Pointer Limit (non-secure)
635  \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state.
636  \param [in]    MainStackPtrLimit  Main Stack Pointer value to set
637 */
638__attribute__((always_inline)) __STATIC_INLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)
639{
640  __ASM volatile ("MSR msplim_ns, %0" : : "r" (MainStackPtrLimit));
641}
642#endif
643
644#endif /* (__ARM_ARCH_8M__ == 1U) */
645
646
647#if ((__ARM_ARCH_7EM__ == 1U) || (__ARM_ARCH_8M__ == 1U))  /* ToDo:  ARMCC_V6: check if this is ok for cortex >=4 */
648
649/**
650  \brief   Get FPSCR
651  \details eturns the current value of the Floating Point Status/Control register.
652  \return               Floating Point Status/Control register value
653 */
654#define __get_FPSCR      __builtin_arm_get_fpscr
655#if 0
656__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_FPSCR(void)
657{
658#if (__FPU_PRESENT == 1U) && (__FPU_USED == 1U)
659  uint32_t result;
660
661  __ASM volatile ("");                                 /* Empty asm statement works as a scheduling barrier */
662  __ASM volatile ("VMRS %0, fpscr" : "=r" (result) );
663  __ASM volatile ("");
664  return(result);
665#else
666   return(0);
667#endif
668}
669#endif
670
671#if  (__ARM_FEATURE_CMSE == 3U)
672/**
673  \brief   Get FPSCR (non-secure)
674  \details Returns the current value of the non-secure Floating Point Status/Control register when in secure state.
675  \return               Floating Point Status/Control register value
676 */
677__attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_FPSCR_NS(void)
678{
679#if (__FPU_PRESENT == 1U) && (__FPU_USED == 1U)
680  uint32_t result;
681
682  __ASM volatile ("");                                 /* Empty asm statement works as a scheduling barrier */
683  __ASM volatile ("VMRS %0, fpscr_ns" : "=r" (result) );
684  __ASM volatile ("");
685  return(result);
686#else
687   return(0);
688#endif
689}
690#endif
691
692
693/**
694  \brief   Set FPSCR
695  \details Assigns the given value to the Floating Point Status/Control register.
696  \param [in]    fpscr  Floating Point Status/Control value to set
697 */
698#define __set_FPSCR      __builtin_arm_set_fpscr
699#if 0
700__attribute__((always_inline)) __STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
701{
702#if (__FPU_PRESENT == 1U) && (__FPU_USED == 1U)
703  __ASM volatile ("");                                 /* Empty asm statement works as a scheduling barrier */
704  __ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) : "vfpcc");
705  __ASM volatile ("");
706#endif
707}
708#endif
709
710#if  (__ARM_FEATURE_CMSE == 3U)
711/**
712  \brief   Set FPSCR (non-secure)
713  \details Assigns the given value to the non-secure Floating Point Status/Control register when in secure state.
714  \param [in]    fpscr  Floating Point Status/Control value to set
715 */
716__attribute__((always_inline)) __STATIC_INLINE void __TZ_set_FPSCR_NS(uint32_t fpscr)
717{
718#if (__FPU_PRESENT == 1U) && (__FPU_USED == 1U)
719  __ASM volatile ("");                                 /* Empty asm statement works as a scheduling barrier */
720  __ASM volatile ("VMSR fpscr_ns, %0" : : "r" (fpscr) : "vfpcc");
721  __ASM volatile ("");
722#endif
723}
724#endif
725
726#endif /* ((__ARM_ARCH_7EM__ == 1U) || (__ARM_ARCH_8M__ == 1U)) */
727
728
729
730/*@} end of CMSIS_Core_RegAccFunctions */
731
732
733/* ##########################  Core Instruction Access  ######################### */
734/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
735  Access to dedicated instructions
736  @{
737*/
738
739/* Define macros for porting to both thumb1 and thumb2.
740 * For thumb1, use low register (r0-r7), specified by constraint "l"
741 * Otherwise, use general registers, specified by constraint "r" */
742#if defined (__thumb__) && !defined (__thumb2__)
743#define __CMSIS_GCC_OUT_REG(r) "=l" (r)
744#define __CMSIS_GCC_USE_REG(r) "l" (r)
745#else
746#define __CMSIS_GCC_OUT_REG(r) "=r" (r)
747#define __CMSIS_GCC_USE_REG(r) "r" (r)
748#endif
749
750/**
751  \brief   No Operation
752  \details No Operation does nothing. This instruction can be used for code alignment purposes.
753 */
754#define __NOP          __builtin_arm_nop
755
756/**
757  \brief   Wait For Interrupt
758  \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
759 */
760#define __WFI          __builtin_arm_wfi
761
762
763/**
764  \brief   Wait For Event
765  \details Wait For Event is a hint instruction that permits the processor to enter
766           a low-power state until one of a number of events occurs.
767 */
768#define __WFE          __builtin_arm_wfe
769
770
771/**
772  \brief   Send Event
773  \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
774 */
775#define __SEV          __builtin_arm_sev
776
777
778/**
779  \brief   Instruction Synchronization Barrier
780  \details Instruction Synchronization Barrier flushes the pipeline in the processor,
781           so that all instructions following the ISB are fetched from cache or memory,
782           after the instruction has been completed.
783 */
784#define __ISB()        __builtin_arm_isb(0xF);
785
786/**
787  \brief   Data Synchronization Barrier
788  \details Acts as a special kind of Data Memory Barrier.
789           It completes when all explicit memory accesses before this instruction complete.
790 */
791#define __DSB()        __builtin_arm_dsb(0xF);
792
793
794/**
795  \brief   Data Memory Barrier
796  \details Ensures the apparent order of the explicit memory operations before
797           and after the instruction, without ensuring their completion.
798 */
799#define __DMB()        __builtin_arm_dmb(0xF);
800
801
802/**
803  \brief   Reverse byte order (32 bit)
804  \details Reverses the byte order in integer value.
805  \param [in]    value  Value to reverse
806  \return               Reversed value
807 */
808#define __REV          __builtin_bswap32
809
810
811/**
812  \brief   Reverse byte order (16 bit)
813  \details Reverses the byte order in two unsigned short values.
814  \param [in]    value  Value to reverse
815  \return               Reversed value
816 */
817#define __REV16          __builtin_bswap16                           /* ToDo:  ARMCC_V6: check if __builtin_bswap16 could be used */
818#if 0
819__attribute__((always_inline)) __STATIC_INLINE uint32_t __REV16(uint32_t value)
820{
821  uint32_t result;
822
823  __ASM volatile ("rev16 %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
824  return(result);
825}
826#endif
827
828
829/**
830  \brief   Reverse byte order in signed short value
831  \details Reverses the byte order in a signed short value with sign extension to integer.
832  \param [in]    value  Value to reverse
833  \return               Reversed value
834 */
835                                                          /* ToDo:  ARMCC_V6: check if __builtin_bswap16 could be used */
836__attribute__((always_inline)) __STATIC_INLINE int32_t __REVSH(int32_t value)
837{
838  int32_t result;
839
840  __ASM volatile ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
841  return(result);
842}
843
844
845/**
846  \brief   Rotate Right in unsigned value (32 bit)
847  \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
848  \param [in]    op1  Value to rotate
849  \param [in]    op2  Number of Bits to rotate
850  \return               Rotated value
851 */
852__attribute__((always_inline)) __STATIC_INLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
853{
854  return (op1 >> op2) | (op1 << (32U - op2));
855}
856
857
858/**
859  \brief   Breakpoint
860  \details Causes the processor to enter Debug state.
861            Debug tools can use this to investigate system state when the instruction at a particular address is reached.
862    \param [in]    value  is ignored by the processor.
863                   If required, a debugger can use it to store additional information about the breakpoint.
864 */
865#define __BKPT(value)                       __ASM volatile ("bkpt "#value)
866
867
868/**
869  \brief   Reverse bit order of value
870  \details Reverses the bit order of the given value.
871  \param [in]    value  Value to reverse
872  \return               Reversed value
873 */
874                                                          /* ToDo:  ARMCC_V6: check if __builtin_arm_rbit is supported */
875__attribute__((always_inline)) __STATIC_INLINE uint32_t __RBIT(uint32_t value)
876{
877  uint32_t result;
878
879#if ((__ARM_ARCH_7M__ == 1U) || (__ARM_ARCH_7EM__ == 1U) || (__ARM_ARCH_8M__ == 1U))  /* ToDo:  ARMCC_V6: check if this is ok for cortex >=3 */
880   __ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) );
881#else
882  int32_t s = 4 /*sizeof(v)*/ * 8 - 1; /* extra shift needed at end */
883
884  result = value;                      /* r will be reversed bits of v; first get LSB of v */
885  for (value >>= 1U; value; value >>= 1U)
886  {
887    result <<= 1U;
888    result |= value & 1U;
889    s--;
890  }
891  result <<= s;                        /* shift when v's highest bits are zero */
892#endif
893  return(result);
894}
895
896
897/**
898  \brief   Count leading zeros
899  \details Counts the number of leading zeros of a data value.
900  \param [in]  value  Value to count the leading zeros
901  \return             number of leading zeros in value
902 */
903#define __CLZ             __builtin_clz
904
905
906#if ((__ARM_ARCH_7M__ == 1U) || (__ARM_ARCH_7EM__ == 1U) || (__ARM_ARCH_8M__ == 1U))  /* ToDo:  ARMCC_V6: check if this is ok for cortex >=3 */
907
908/**
909  \brief   LDR Exclusive (8 bit)
910  \details Executes a exclusive LDR instruction for 8 bit value.
911  \param [in]    ptr  Pointer to data
912  \return             value of type uint8_t at (*ptr)
913 */
914#define __LDREXB        (uint8_t)__builtin_arm_ldrex
915
916
917/**
918  \brief   LDR Exclusive (16 bit)
919  \details Executes a exclusive LDR instruction for 16 bit values.
920  \param [in]    ptr  Pointer to data
921  \return        value of type uint16_t at (*ptr)
922 */
923#define __LDREXH        (uint16_t)__builtin_arm_ldrex
924
925
926/**
927  \brief   LDR Exclusive (32 bit)
928  \details Executes a exclusive LDR instruction for 32 bit values.
929  \param [in]    ptr  Pointer to data
930  \return        value of type uint32_t at (*ptr)
931 */
932#define __LDREXW        (uint32_t)__builtin_arm_ldrex
933
934
935/**
936  \brief   STR Exclusive (8 bit)
937  \details Executes a exclusive STR instruction for 8 bit values.
938  \param [in]  value  Value to store
939  \param [in]    ptr  Pointer to location
940  \return          0  Function succeeded
941  \return          1  Function failed
942 */
943#define __STREXB        (uint32_t)__builtin_arm_strex
944
945
946/**
947  \brief   STR Exclusive (16 bit)
948  \details Executes a exclusive STR instruction for 16 bit values.
949  \param [in]  value  Value to store
950  \param [in]    ptr  Pointer to location
951  \return          0  Function succeeded
952  \return          1  Function failed
953 */
954#define __STREXH        (uint32_t)__builtin_arm_strex
955
956
957/**
958  \brief   STR Exclusive (32 bit)
959  \details Executes a exclusive STR instruction for 32 bit values.
960  \param [in]  value  Value to store
961  \param [in]    ptr  Pointer to location
962  \return          0  Function succeeded
963  \return          1  Function failed
964 */
965#define __STREXW        (uint32_t)__builtin_arm_strex
966
967
968/**
969  \brief   Remove the exclusive lock
970  \details Removes the exclusive lock which is created by LDREX.
971 */
972#define __CLREX             __builtin_arm_clrex
973
974
975/**
976  \brief   Signed Saturate
977  \details Saturates a signed value.
978  \param [in]  value  Value to be saturated
979  \param [in]    sat  Bit position to saturate to (1..32)
980  \return             Saturated value
981 */
982/*#define __SSAT             __builtin_arm_ssat*/
983#define __SSAT(ARG1,ARG2) \
984({                          \
985  int32_t __RES, __ARG1 = (ARG1); \
986  __ASM ("ssat %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
987  __RES; \
988 })
989
990
991/**
992  \brief   Unsigned Saturate
993  \details Saturates an unsigned value.
994  \param [in]  value  Value to be saturated
995  \param [in]    sat  Bit position to saturate to (0..31)
996  \return             Saturated value
997 */
998#define __USAT             __builtin_arm_usat
999#if 0
1000#define __USAT(ARG1,ARG2) \
1001({                          \
1002  uint32_t __RES, __ARG1 = (ARG1); \
1003  __ASM ("usat %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
1004  __RES; \
1005 })
1006#endif
1007
1008
1009/**
1010  \brief   Rotate Right with Extend (32 bit)
1011  \details Moves each bit of a bitstring right by one bit.
1012           The carry input is shifted in at the left end of the bitstring.
1013  \param [in]    value  Value to rotate
1014  \return               Rotated value
1015 */
1016__attribute__((always_inline)) __STATIC_INLINE uint32_t __RRX(uint32_t value)
1017{
1018  uint32_t result;
1019
1020  __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
1021  return(result);
1022}
1023
1024
1025/**
1026  \brief   LDRT Unprivileged (8 bit)
1027  \details Executes a Unprivileged LDRT instruction for 8 bit value.
1028  \param [in]    ptr  Pointer to data
1029  \return             value of type uint8_t at (*ptr)
1030 */
1031__attribute__((always_inline)) __STATIC_INLINE uint8_t __LDRBT(volatile uint8_t *ptr)
1032{
1033    uint32_t result;
1034
1035   __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*ptr) );
1036   return ((uint8_t) result);    /* Add explicit type cast here */
1037}
1038
1039
1040/**
1041  \brief   LDRT Unprivileged (16 bit)
1042  \details Executes a Unprivileged LDRT instruction for 16 bit values.
1043  \param [in]    ptr  Pointer to data
1044  \return        value of type uint16_t at (*ptr)
1045 */
1046__attribute__((always_inline)) __STATIC_INLINE uint16_t __LDRHT(volatile uint16_t *ptr)
1047{
1048    uint32_t result;
1049
1050   __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*ptr) );
1051   return ((uint16_t) result);    /* Add explicit type cast here */
1052}
1053
1054
1055/**
1056  \brief   LDRT Unprivileged (32 bit)
1057  \details Executes a Unprivileged LDRT instruction for 32 bit values.
1058  \param [in]    ptr  Pointer to data
1059  \return        value of type uint32_t at (*ptr)
1060 */
1061__attribute__((always_inline)) __STATIC_INLINE uint32_t __LDRT(volatile uint32_t *ptr)
1062{
1063    uint32_t result;
1064
1065   __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*ptr) );
1066   return(result);
1067}
1068
1069
1070/**
1071  \brief   STRT Unprivileged (8 bit)
1072  \details Executes a Unprivileged STRT instruction for 8 bit values.
1073  \param [in]  value  Value to store
1074  \param [in]    ptr  Pointer to location
1075 */
1076__attribute__((always_inline)) __STATIC_INLINE void __STRBT(uint8_t value, volatile uint8_t *ptr)
1077{
1078   __ASM volatile ("strbt %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1079}
1080
1081
1082/**
1083  \brief   STRT Unprivileged (16 bit)
1084  \details Executes a Unprivileged STRT instruction for 16 bit values.
1085  \param [in]  value  Value to store
1086  \param [in]    ptr  Pointer to location
1087 */
1088__attribute__((always_inline)) __STATIC_INLINE void __STRHT(uint16_t value, volatile uint16_t *ptr)
1089{
1090   __ASM volatile ("strht %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1091}
1092
1093
1094/**
1095  \brief   STRT Unprivileged (32 bit)
1096  \details Executes a Unprivileged STRT instruction for 32 bit values.
1097  \param [in]  value  Value to store
1098  \param [in]    ptr  Pointer to location
1099 */
1100__attribute__((always_inline)) __STATIC_INLINE void __STRT(uint32_t value, volatile uint32_t *ptr)
1101{
1102   __ASM volatile ("strt %1, %0" : "=Q" (*ptr) : "r" (value) );
1103}
1104
1105#endif /* ((__ARM_ARCH_7M__ == 1U) || (__ARM_ARCH_7EM__ == 1U) || (__ARM_ARCH_8M__ == 1U)) */
1106
1107
1108#if (__ARM_ARCH_8M__ == 1U)
1109
1110/**
1111  \brief   Load-Acquire (8 bit)
1112  \details Executes a LDAB instruction for 8 bit value.
1113  \param [in]    ptr  Pointer to data
1114  \return             value of type uint8_t at (*ptr)
1115 */
1116__attribute__((always_inline)) __STATIC_INLINE uint8_t __LDAB(volatile uint8_t *ptr)
1117{
1118    uint32_t result;
1119
1120   __ASM volatile ("ldab %0, %1" : "=r" (result) : "Q" (*ptr) );
1121   return ((uint8_t) result);
1122}
1123
1124
1125/**
1126  \brief   Load-Acquire (16 bit)
1127  \details Executes a LDAH instruction for 16 bit values.
1128  \param [in]    ptr  Pointer to data
1129  \return        value of type uint16_t at (*ptr)
1130 */
1131__attribute__((always_inline)) __STATIC_INLINE uint16_t __LDAH(volatile uint16_t *ptr)
1132{
1133    uint32_t result;
1134
1135   __ASM volatile ("ldah %0, %1" : "=r" (result) : "Q" (*ptr) );
1136   return ((uint16_t) result);
1137}
1138
1139
1140/**
1141  \brief   Load-Acquire (32 bit)
1142  \details Executes a LDA instruction for 32 bit values.
1143  \param [in]    ptr  Pointer to data
1144  \return        value of type uint32_t at (*ptr)
1145 */
1146__attribute__((always_inline)) __STATIC_INLINE uint32_t __LDA(volatile uint32_t *ptr)
1147{
1148    uint32_t result;
1149
1150   __ASM volatile ("lda %0, %1" : "=r" (result) : "Q" (*ptr) );
1151   return(result);
1152}
1153
1154
1155/**
1156  \brief   Store-Release (8 bit)
1157  \details Executes a STLB instruction for 8 bit values.
1158  \param [in]  value  Value to store
1159  \param [in]    ptr  Pointer to location
1160 */
1161__attribute__((always_inline)) __STATIC_INLINE void __STLB(uint8_t value, volatile uint8_t *ptr)
1162{
1163   __ASM volatile ("stlb %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1164}
1165
1166
1167/**
1168  \brief   Store-Release (16 bit)
1169  \details Executes a STLH instruction for 16 bit values.
1170  \param [in]  value  Value to store
1171  \param [in]    ptr  Pointer to location
1172 */
1173__attribute__((always_inline)) __STATIC_INLINE void __STLH(uint16_t value, volatile uint16_t *ptr)
1174{
1175   __ASM volatile ("stlh %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1176}
1177
1178
1179/**
1180  \brief   Store-Release (32 bit)
1181  \details Executes a STL instruction for 32 bit values.
1182  \param [in]  value  Value to store
1183  \param [in]    ptr  Pointer to location
1184 */
1185__attribute__((always_inline)) __STATIC_INLINE void __STL(uint32_t value, volatile uint32_t *ptr)
1186{
1187   __ASM volatile ("stl %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1188}
1189
1190
1191/**
1192  \brief   Load-Acquire Exclusive (8 bit)
1193  \details Executes a LDAB exclusive instruction for 8 bit value.
1194  \param [in]    ptr  Pointer to data
1195  \return             value of type uint8_t at (*ptr)
1196 */
1197#define     __LDAEXB                 (uint8_t)__builtin_arm_ldaex
1198
1199
1200/**
1201  \brief   Load-Acquire Exclusive (16 bit)
1202  \details Executes a LDAH exclusive instruction for 16 bit values.
1203  \param [in]    ptr  Pointer to data
1204  \return        value of type uint16_t at (*ptr)
1205 */
1206#define     __LDAEXH                 (uint16_t)__builtin_arm_ldaex
1207
1208
1209/**
1210  \brief   Load-Acquire Exclusive (32 bit)
1211  \details Executes a LDA exclusive instruction for 32 bit values.
1212  \param [in]    ptr  Pointer to data
1213  \return        value of type uint32_t at (*ptr)
1214 */
1215#define     __LDAEX                  (uint32_t)__builtin_arm_ldaex
1216
1217
1218/**
1219  \brief   Store-Release Exclusive (8 bit)
1220  \details Executes a STLB exclusive instruction for 8 bit values.
1221  \param [in]  value  Value to store
1222  \param [in]    ptr  Pointer to location
1223  \return          0  Function succeeded
1224  \return          1  Function failed
1225 */
1226#define     __STLEXB                 (uint32_t)__builtin_arm_stlex
1227
1228
1229/**
1230  \brief   Store-Release Exclusive (16 bit)
1231  \details Executes a STLH exclusive instruction for 16 bit values.
1232  \param [in]  value  Value to store
1233  \param [in]    ptr  Pointer to location
1234  \return          0  Function succeeded
1235  \return          1  Function failed
1236 */
1237#define     __STLEXH                 (uint32_t)__builtin_arm_stlex
1238
1239
1240/**
1241  \brief   Store-Release Exclusive (32 bit)
1242  \details Executes a STL exclusive instruction for 32 bit values.
1243  \param [in]  value  Value to store
1244  \param [in]    ptr  Pointer to location
1245  \return          0  Function succeeded
1246  \return          1  Function failed
1247 */
1248#define     __STLEX                  (uint32_t)__builtin_arm_stlex
1249
1250#endif /* (__ARM_ARCH_8M__ == 1U) */
1251
1252/*@}*/ /* end of group CMSIS_Core_InstructionInterface */
1253
1254
1255/* ###################  Compiler specific Intrinsics  ########################### */
1256/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
1257  Access to dedicated SIMD instructions
1258  @{
1259*/
1260
1261#if (__ARM_FEATURE_DSP == 1U)        /* ToDo:  ARMCC_V6: This should be ARCH >= ARMv7-M + SIMD */
1262
1263__attribute__((always_inline)) __STATIC_INLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
1264{
1265  uint32_t result;
1266
1267  __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1268  return(result);
1269}
1270
1271__attribute__((always_inline)) __STATIC_INLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
1272{
1273  uint32_t result;
1274
1275  __ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1276  return(result);
1277}
1278
1279__attribute__((always_inline)) __STATIC_INLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
1280{
1281  uint32_t result;
1282
1283  __ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1284  return(result);
1285}
1286
1287__attribute__((always_inline)) __STATIC_INLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
1288{
1289  uint32_t result;
1290
1291  __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1292  return(result);
1293}
1294
1295__attribute__((always_inline)) __STATIC_INLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
1296{
1297  uint32_t result;
1298
1299  __ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1300  return(result);
1301}
1302
1303__attribute__((always_inline)) __STATIC_INLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
1304{
1305  uint32_t result;
1306
1307  __ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1308  return(result);
1309}
1310
1311
1312__attribute__((always_inline)) __STATIC_INLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
1313{
1314  uint32_t result;
1315
1316  __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1317  return(result);
1318}
1319
1320__attribute__((always_inline)) __STATIC_INLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
1321{
1322  uint32_t result;
1323
1324  __ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1325  return(result);
1326}
1327
1328__attribute__((always_inline)) __STATIC_INLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
1329{
1330  uint32_t result;
1331
1332  __ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1333  return(result);
1334}
1335
1336__attribute__((always_inline)) __STATIC_INLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
1337{
1338  uint32_t result;
1339
1340  __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1341  return(result);
1342}
1343
1344__attribute__((always_inline)) __STATIC_INLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
1345{
1346  uint32_t result;
1347
1348  __ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1349  return(result);
1350}
1351
1352__attribute__((always_inline)) __STATIC_INLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
1353{
1354  uint32_t result;
1355
1356  __ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1357  return(result);
1358}
1359
1360
1361__attribute__((always_inline)) __STATIC_INLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
1362{
1363  uint32_t result;
1364
1365  __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1366  return(result);
1367}
1368
1369__attribute__((always_inline)) __STATIC_INLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
1370{
1371  uint32_t result;
1372
1373  __ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1374  return(result);
1375}
1376
1377__attribute__((always_inline)) __STATIC_INLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
1378{
1379  uint32_t result;
1380
1381  __ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1382  return(result);
1383}
1384
1385__attribute__((always_inline)) __STATIC_INLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
1386{
1387  uint32_t result;
1388
1389  __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1390  return(result);
1391}
1392
1393__attribute__((always_inline)) __STATIC_INLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
1394{
1395  uint32_t result;
1396
1397  __ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1398  return(result);
1399}
1400
1401__attribute__((always_inline)) __STATIC_INLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
1402{
1403  uint32_t result;
1404
1405  __ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1406  return(result);
1407}
1408
1409__attribute__((always_inline)) __STATIC_INLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
1410{
1411  uint32_t result;
1412
1413  __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1414  return(result);
1415}
1416
1417__attribute__((always_inline)) __STATIC_INLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
1418{
1419  uint32_t result;
1420
1421  __ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1422  return(result);
1423}
1424
1425__attribute__((always_inline)) __STATIC_INLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
1426{
1427  uint32_t result;
1428
1429  __ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1430  return(result);
1431}
1432
1433__attribute__((always_inline)) __STATIC_INLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
1434{
1435  uint32_t result;
1436
1437  __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1438  return(result);
1439}
1440
1441__attribute__((always_inline)) __STATIC_INLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
1442{
1443  uint32_t result;
1444
1445  __ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1446  return(result);
1447}
1448
1449__attribute__((always_inline)) __STATIC_INLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
1450{
1451  uint32_t result;
1452
1453  __ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1454  return(result);
1455}
1456
1457__attribute__((always_inline)) __STATIC_INLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
1458{
1459  uint32_t result;
1460
1461  __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1462  return(result);
1463}
1464
1465__attribute__((always_inline)) __STATIC_INLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
1466{
1467  uint32_t result;
1468
1469  __ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1470  return(result);
1471}
1472
1473__attribute__((always_inline)) __STATIC_INLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
1474{
1475  uint32_t result;
1476
1477  __ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1478  return(result);
1479}
1480
1481__attribute__((always_inline)) __STATIC_INLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
1482{
1483  uint32_t result;
1484
1485  __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1486  return(result);
1487}
1488
1489__attribute__((always_inline)) __STATIC_INLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
1490{
1491  uint32_t result;
1492
1493  __ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1494  return(result);
1495}
1496
1497__attribute__((always_inline)) __STATIC_INLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
1498{
1499  uint32_t result;
1500
1501  __ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1502  return(result);
1503}
1504
1505__attribute__((always_inline)) __STATIC_INLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
1506{
1507  uint32_t result;
1508
1509  __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1510  return(result);
1511}
1512
1513__attribute__((always_inline)) __STATIC_INLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
1514{
1515  uint32_t result;
1516
1517  __ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1518  return(result);
1519}
1520
1521__attribute__((always_inline)) __STATIC_INLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
1522{
1523  uint32_t result;
1524
1525  __ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1526  return(result);
1527}
1528
1529__attribute__((always_inline)) __STATIC_INLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
1530{
1531  uint32_t result;
1532
1533  __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1534  return(result);
1535}
1536
1537__attribute__((always_inline)) __STATIC_INLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
1538{
1539  uint32_t result;
1540
1541  __ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1542  return(result);
1543}
1544
1545__attribute__((always_inline)) __STATIC_INLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
1546{
1547  uint32_t result;
1548
1549  __ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1550  return(result);
1551}
1552
1553__attribute__((always_inline)) __STATIC_INLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
1554{
1555  uint32_t result;
1556
1557  __ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1558  return(result);
1559}
1560
1561__attribute__((always_inline)) __STATIC_INLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
1562{
1563  uint32_t result;
1564
1565  __ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1566  return(result);
1567}
1568
1569#define __SSAT16(ARG1,ARG2) \
1570({                          \
1571  uint32_t __RES, __ARG1 = (ARG1); \
1572  __ASM ("ssat16 %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
1573  __RES; \
1574 })
1575
1576#define __USAT16(ARG1,ARG2) \
1577({                          \
1578  uint32_t __RES, __ARG1 = (ARG1); \
1579  __ASM ("usat16 %0, %1, %2" : "=r" (__RES) :  "I" (ARG2), "r" (__ARG1) ); \
1580  __RES; \
1581 })
1582
1583__attribute__((always_inline)) __STATIC_INLINE uint32_t __UXTB16(uint32_t op1)
1584{
1585  uint32_t result;
1586
1587  __ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
1588  return(result);
1589}
1590
1591__attribute__((always_inline)) __STATIC_INLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
1592{
1593  uint32_t result;
1594
1595  __ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1596  return(result);
1597}
1598
1599__attribute__((always_inline)) __STATIC_INLINE uint32_t __SXTB16(uint32_t op1)
1600{
1601  uint32_t result;
1602
1603  __ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
1604  return(result);
1605}
1606
1607__attribute__((always_inline)) __STATIC_INLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
1608{
1609  uint32_t result;
1610
1611  __ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1612  return(result);
1613}
1614
1615__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMUAD  (uint32_t op1, uint32_t op2)
1616{
1617  uint32_t result;
1618
1619  __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1620  return(result);
1621}
1622
1623__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
1624{
1625  uint32_t result;
1626
1627  __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1628  return(result);
1629}
1630
1631__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
1632{
1633  uint32_t result;
1634
1635  __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1636  return(result);
1637}
1638
1639__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
1640{
1641  uint32_t result;
1642
1643  __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1644  return(result);
1645}
1646
1647__attribute__((always_inline)) __STATIC_INLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc)
1648{
1649  union llreg_u{
1650    uint32_t w32[2];
1651    uint64_t w64;
1652  } llr;
1653  llr.w64 = acc;
1654
1655#ifndef __ARMEB__   /* Little endian */
1656  __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1657#else               /* Big endian */
1658  __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1659#endif
1660
1661  return(llr.w64);
1662}
1663
1664__attribute__((always_inline)) __STATIC_INLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc)
1665{
1666  union llreg_u{
1667    uint32_t w32[2];
1668    uint64_t w64;
1669  } llr;
1670  llr.w64 = acc;
1671
1672#ifndef __ARMEB__   /* Little endian */
1673  __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1674#else               /* Big endian */
1675  __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1676#endif
1677
1678  return(llr.w64);
1679}
1680
1681__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMUSD  (uint32_t op1, uint32_t op2)
1682{
1683  uint32_t result;
1684
1685  __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1686  return(result);
1687}
1688
1689__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
1690{
1691  uint32_t result;
1692
1693  __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1694  return(result);
1695}
1696
1697__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
1698{
1699  uint32_t result;
1700
1701  __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1702  return(result);
1703}
1704
1705__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
1706{
1707  uint32_t result;
1708
1709  __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1710  return(result);
1711}
1712
1713__attribute__((always_inline)) __STATIC_INLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc)
1714{
1715  union llreg_u{
1716    uint32_t w32[2];
1717    uint64_t w64;
1718  } llr;
1719  llr.w64 = acc;
1720
1721#ifndef __ARMEB__   /* Little endian */
1722  __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1723#else               /* Big endian */
1724  __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1725#endif
1726
1727  return(llr.w64);
1728}
1729
1730__attribute__((always_inline)) __STATIC_INLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc)
1731{
1732  union llreg_u{
1733    uint32_t w32[2];
1734    uint64_t w64;
1735  } llr;
1736  llr.w64 = acc;
1737
1738#ifndef __ARMEB__   /* Little endian */
1739  __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1740#else               /* Big endian */
1741  __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1742#endif
1743
1744  return(llr.w64);
1745}
1746
1747__attribute__((always_inline)) __STATIC_INLINE uint32_t __SEL  (uint32_t op1, uint32_t op2)
1748{
1749  uint32_t result;
1750
1751  __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1752  return(result);
1753}
1754
1755__attribute__((always_inline)) __STATIC_INLINE  int32_t __QADD( int32_t op1,  int32_t op2)
1756{
1757  int32_t result;
1758
1759  __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1760  return(result);
1761}
1762
1763__attribute__((always_inline)) __STATIC_INLINE  int32_t __QSUB( int32_t op1,  int32_t op2)
1764{
1765  int32_t result;
1766
1767  __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1768  return(result);
1769}
1770
1771#define __PKHBT(ARG1,ARG2,ARG3) \
1772({                          \
1773  uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
1774  __ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) :  "r" (__ARG1), "r" (__ARG2), "I" (ARG3)  ); \
1775  __RES; \
1776 })
1777
1778#define __PKHTB(ARG1,ARG2,ARG3) \
1779({                          \
1780  uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
1781  if (ARG3 == 0) \
1782    __ASM ("pkhtb %0, %1, %2" : "=r" (__RES) :  "r" (__ARG1), "r" (__ARG2)  ); \
1783  else \
1784    __ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) :  "r" (__ARG1), "r" (__ARG2), "I" (ARG3)  ); \
1785  __RES; \
1786 })
1787
1788__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
1789{
1790 int32_t result;
1791
1792 __ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r"  (op1), "r" (op2), "r" (op3) );
1793 return(result);
1794}
1795
1796#endif /* (__ARM_FEATURE_DSP == 1U) */
1797/*@} end of group CMSIS_SIMD_intrinsics */
1798
1799
1800#endif /* __CMSIS_ARMCC_V6_H */
Note: See TracBrowser for help on using the repository browser.