1 | /** |
---|
2 | ****************************************************************************** |
---|
3 | * @file stm32g0xx_hal_cryp.c |
---|
4 | * @author MCD Application Team |
---|
5 | * @brief CRYP HAL module driver. |
---|
6 | * This file provides firmware functions to manage the following |
---|
7 | * functionalities of the Cryptography (CRYP) peripheral: |
---|
8 | * + Initialization, de-initialization, set config and get config functions |
---|
9 | * + DES/TDES, AES processing functions |
---|
10 | * + DMA callback functions |
---|
11 | * + CRYP IRQ handler management |
---|
12 | * + Peripheral State functions |
---|
13 | * |
---|
14 | @verbatim |
---|
15 | ============================================================================== |
---|
16 | ##### How to use this driver ##### |
---|
17 | ============================================================================== |
---|
18 | [..] |
---|
19 | The CRYP HAL driver can be used in CRYP or TinyAES peripheral as follows: |
---|
20 | |
---|
21 | (#)Initialize the CRYP low level resources by implementing the HAL_CRYP_MspInit(): |
---|
22 | (##) Enable the CRYP interface clock using __HAL_RCC_CRYP_CLK_ENABLE()or __HAL_RCC_AES_CLK_ENABLE for TinyAES peripheral |
---|
23 | (##) In case of using interrupts (e.g. HAL_CRYP_Encrypt_IT()) |
---|
24 | (+++) Configure the CRYP interrupt priority using HAL_NVIC_SetPriority() |
---|
25 | (+++) Enable the CRYP IRQ handler using HAL_NVIC_EnableIRQ() |
---|
26 | (+++) In CRYP IRQ handler, call HAL_CRYP_IRQHandler() |
---|
27 | (##) In case of using DMA to control data transfer (e.g. HAL_CRYP_Encrypt_DMA()) |
---|
28 | (+++) Enable the DMAx interface clock using __RCC_DMAx_CLK_ENABLE() |
---|
29 | (+++) Configure and enable two DMA streams one for managing data transfer from |
---|
30 | memory to peripheral (input stream) and another stream for managing data |
---|
31 | transfer from peripheral to memory (output stream) |
---|
32 | (+++) Associate the initialized DMA handle to the CRYP DMA handle |
---|
33 | using __HAL_LINKDMA() |
---|
34 | (+++) Configure the priority and enable the NVIC for the transfer complete |
---|
35 | interrupt on the two DMA Streams. The output stream should have higher |
---|
36 | priority than the input stream HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ() |
---|
37 | |
---|
38 | (#)Initialize the CRYP according to the specified parameters : |
---|
39 | (##) The data type: 1-bit, 8-bit, 16-bit or 32-bit. |
---|
40 | (##) The key size: 128, 192 or 256. |
---|
41 | (##) The AlgoMode DES/ TDES Algorithm ECB/CBC or AES Algorithm ECB/CBC/CTR/GCM or CCM. |
---|
42 | (##) The initialization vector (counter). It is not used in ECB mode. |
---|
43 | (##) The key buffer used for encryption/decryption. |
---|
44 | (+++) In some specific configurations, the key is written by the application |
---|
45 | code out of the HAL scope. In that case, user can still resort to the |
---|
46 | HAL APIs as usual but must make sure that pKey pointer is set to NULL. |
---|
47 | (##) The Header used only in AES GCM and CCM Algorithm for authentication. |
---|
48 | (##) The HeaderSize The size of header buffer in word. |
---|
49 | (##) The B0 block is the first authentication block used only in AES CCM mode. |
---|
50 | |
---|
51 | (#)Three processing (encryption/decryption) functions are available: |
---|
52 | (##) Polling mode: encryption and decryption APIs are blocking functions |
---|
53 | i.e. they process the data and wait till the processing is finished, |
---|
54 | e.g. HAL_CRYP_Encrypt & HAL_CRYP_Decrypt |
---|
55 | (##) Interrupt mode: encryption and decryption APIs are not blocking functions |
---|
56 | i.e. they process the data under interrupt, |
---|
57 | e.g. HAL_CRYP_Encrypt_IT & HAL_CRYP_Decrypt_IT |
---|
58 | (##) DMA mode: encryption and decryption APIs are not blocking functions |
---|
59 | i.e. the data transfer is ensured by DMA, |
---|
60 | e.g. HAL_CRYP_Encrypt_DMA & HAL_CRYP_Decrypt_DMA |
---|
61 | |
---|
62 | (#)When the processing function is called at first time after HAL_CRYP_Init() |
---|
63 | the CRYP peripheral is configured and processes the buffer in input. |
---|
64 | At second call, no need to Initialize the CRYP, user have to get current configuration via |
---|
65 | HAL_CRYP_GetConfig() API, then only HAL_CRYP_SetConfig() is requested to set |
---|
66 | new parametres, finally user can start encryption/decryption. |
---|
67 | |
---|
68 | (#)Call HAL_CRYP_DeInit() to deinitialize the CRYP peripheral. |
---|
69 | |
---|
70 | (#)To process a single message with consecutive calls to HAL_CRYP_Encrypt() or HAL_CRYP_Decrypt() |
---|
71 | without having to configure again the Key or the Initialization Vector between each API call, |
---|
72 | the field KeyIVConfigSkip of the initialization structure must be set to CRYP_KEYIVCONFIG_ONCE. |
---|
73 | Same is true for consecutive calls of HAL_CRYP_Encrypt_IT(), HAL_CRYP_Decrypt_IT(), HAL_CRYP_Encrypt_DMA() |
---|
74 | or HAL_CRYP_Decrypt_DMA(). |
---|
75 | |
---|
76 | [..] |
---|
77 | The cryptographic processor supports following standards: |
---|
78 | (#) The data encryption standard (DES) and Triple-DES (TDES) supported only by CRYP1 peripheral: |
---|
79 | (##)64-bit data block processing |
---|
80 | (##) chaining modes supported : |
---|
81 | (+++) Electronic Code Book(ECB) |
---|
82 | (+++) Cipher Block Chaining (CBC) |
---|
83 | (##) keys length supported :64-bit, 128-bit and 192-bit. |
---|
84 | (#) The advanced encryption standard (AES) supported by CRYP1 & TinyAES peripheral: |
---|
85 | (##)128-bit data block processing |
---|
86 | (##) chaining modes supported : |
---|
87 | (+++) Electronic Code Book(ECB) |
---|
88 | (+++) Cipher Block Chaining (CBC) |
---|
89 | (+++) Counter mode (CTR) |
---|
90 | (+++) Galois/counter mode (GCM/GMAC) |
---|
91 | (+++) Counter with Cipher Block Chaining-Message(CCM) |
---|
92 | (##) keys length Supported : |
---|
93 | (+++) for CRYP1 peripheral: 128-bit, 192-bit and 256-bit. |
---|
94 | (+++) for TinyAES peripheral: 128-bit and 256-bit |
---|
95 | |
---|
96 | [..] |
---|
97 | (@) Specific care must be taken to format the key and the Initialization Vector IV! |
---|
98 | |
---|
99 | [..] If the key is defined as a 128-bit long array key[127..0] = {b127 ... b0} where |
---|
100 | b127 is the MSB and b0 the LSB, the key must be stored in MCU memory |
---|
101 | (+) as a sequence of words where the MSB word comes first (occupies the |
---|
102 | lowest memory address) |
---|
103 | (++) address n+0 : 0b b127 .. b120 b119 .. b112 b111 .. b104 b103 .. b96 |
---|
104 | (++) address n+4 : 0b b95 .. b88 b87 .. b80 b79 .. b72 b71 .. b64 |
---|
105 | (++) address n+8 : 0b b63 .. b56 b55 .. b48 b47 .. b40 b39 .. b32 |
---|
106 | (++) address n+C : 0b b31 .. b24 b23 .. b16 b15 .. b8 b7 .. b0 |
---|
107 | [..] Hereafter, another illustration when considering a 128-bit long key made of 16 bytes {B15..B0}. |
---|
108 | The 4 32-bit words that make the key must be stored as follows in MCU memory: |
---|
109 | (+) address n+0 : 0x B15 B14 B13 B12 |
---|
110 | (+) address n+4 : 0x B11 B10 B9 B8 |
---|
111 | (+) address n+8 : 0x B7 B6 B5 B4 |
---|
112 | (+) address n+C : 0x B3 B2 B1 B0 |
---|
113 | [..] which leads to the expected setting |
---|
114 | (+) AES_KEYR3 = 0x B15 B14 B13 B12 |
---|
115 | (+) AES_KEYR2 = 0x B11 B10 B9 B8 |
---|
116 | (+) AES_KEYR1 = 0x B7 B6 B5 B4 |
---|
117 | (+) AES_KEYR0 = 0x B3 B2 B1 B0 |
---|
118 | |
---|
119 | [..] Same format must be applied for a 256-bit long key made of 32 bytes {B31..B0}. |
---|
120 | The 8 32-bit words that make the key must be stored as follows in MCU memory: |
---|
121 | (+) address n+00 : 0x B31 B30 B29 B28 |
---|
122 | (+) address n+04 : 0x B27 B26 B25 B24 |
---|
123 | (+) address n+08 : 0x B23 B22 B21 B20 |
---|
124 | (+) address n+0C : 0x B19 B18 B17 B16 |
---|
125 | (+) address n+10 : 0x B15 B14 B13 B12 |
---|
126 | (+) address n+14 : 0x B11 B10 B9 B8 |
---|
127 | (+) address n+18 : 0x B7 B6 B5 B4 |
---|
128 | (+) address n+1C : 0x B3 B2 B1 B0 |
---|
129 | [..] which leads to the expected setting |
---|
130 | (+) AES_KEYR7 = 0x B31 B30 B29 B28 |
---|
131 | (+) AES_KEYR6 = 0x B27 B26 B25 B24 |
---|
132 | (+) AES_KEYR5 = 0x B23 B22 B21 B20 |
---|
133 | (+) AES_KEYR4 = 0x B19 B18 B17 B16 |
---|
134 | (+) AES_KEYR3 = 0x B15 B14 B13 B12 |
---|
135 | (+) AES_KEYR2 = 0x B11 B10 B9 B8 |
---|
136 | (+) AES_KEYR1 = 0x B7 B6 B5 B4 |
---|
137 | (+) AES_KEYR0 = 0x B3 B2 B1 B0 |
---|
138 | |
---|
139 | [..] Initialization Vector IV (4 32-bit words) format must follow the same as |
---|
140 | that of a 128-bit long key. |
---|
141 | |
---|
142 | [..] Note that key and IV registers are not sensitive to swap mode selection. |
---|
143 | |
---|
144 | [..] This section describes the AES Galois/counter mode (GCM) supported by both CRYP1 and TinyAES peripherals: |
---|
145 | (#) Algorithm supported : |
---|
146 | (##) Galois/counter mode (GCM) |
---|
147 | (##) Galois message authentication code (GMAC) :is exactly the same as |
---|
148 | GCM algorithm composed only by an header. |
---|
149 | (#) Four phases are performed in GCM : |
---|
150 | (##) Init phase: peripheral prepares the GCM hash subkey (H) and do the IV processing |
---|
151 | (##) Header phase: peripheral processes the Additional Authenticated Data (AAD), with hash |
---|
152 | computation only. |
---|
153 | (##) Payload phase: peripheral processes the plaintext (P) with hash computation + keystream |
---|
154 | encryption + data XORing. It works in a similar way for ciphertext (C). |
---|
155 | (##) Final phase: peripheral generates the authenticated tag (T) using the last block of data. |
---|
156 | (#) structure of message construction in GCM is defined as below : |
---|
157 | (##) 16 bytes Initial Counter Block (ICB)composed of IV and counter |
---|
158 | |
---|
159 | ICB |
---|
160 | +-------------------------------------------------------+ |
---|
161 | | Initialization vector (IV) | Counter | |
---|
162 | |----------------|----------------|-----------|---------| |
---|
163 | 127 95 63 31 0 |
---|
164 | |
---|
165 | |
---|
166 | Bit Number Register Contents |
---|
167 | ---------- --------------- ----------- |
---|
168 | 127 ...96 CRYP_IV1R[31:0] ICB[127:96] |
---|
169 | 95 ...64 CRYP_IV1L[31:0] B0[95:64] |
---|
170 | 63 ... 32 CRYP_IV0R[31:0] ICB[63:32] |
---|
171 | 31 ... 0 CRYP_IV0L[31:0] ICB[31:0], where 32-bit counter= 0x2 |
---|
172 | |
---|
173 | |
---|
174 | |
---|
175 | (##) The authenticated header A (also knows as Additional Authentication Data AAD) |
---|
176 | this part of the message is only authenticated, not encrypted. |
---|
177 | (##) The plaintext message P is both authenticated and encrypted as ciphertext. |
---|
178 | GCM standard specifies that ciphertext has same bit length as the plaintext. |
---|
179 | (##) The last block is composed of the length of A (on 64 bits) and the length of ciphertext |
---|
180 | (on 64 bits) |
---|
181 | GCM last block definition |
---|
182 | +-------------------------------------------------------------------+ |
---|
183 | | Bit[0] | Bit[32] | Bit[64] | Bit[96] | |
---|
184 | |-----------|--------------------|-----------|----------------------| |
---|
185 | | 0x0 | Header length[31:0]| 0x0 | Payload length[31:0] | |
---|
186 | |-----------|--------------------|-----------|----------------------| |
---|
187 | |
---|
188 | [..] This section describe The AES Counter with Cipher Block Chaining-Message |
---|
189 | Authentication Code (CCM) supported by both CRYP1 and TinyAES peripheral: |
---|
190 | (#) Specific parameters for CCM : |
---|
191 | |
---|
192 | (##) B0 block : According to NIST Special Publication 800-38C, |
---|
193 | The first block B0 is formatted as follows, where l(m) is encoded in |
---|
194 | most-significant-byte first order: |
---|
195 | |
---|
196 | Octet Number Contents |
---|
197 | ------------ --------- |
---|
198 | 0 Flags |
---|
199 | 1 ... 15-q Nonce N |
---|
200 | 16-q ... 15 Q |
---|
201 | |
---|
202 | the Flags field is formatted as follows: |
---|
203 | |
---|
204 | Bit Number Contents |
---|
205 | ---------- ---------------------- |
---|
206 | 7 Reserved (always zero) |
---|
207 | 6 Adata |
---|
208 | 5 ... 3 (t-2)/2 |
---|
209 | 2 ... 0 [q-1]3 |
---|
210 | |
---|
211 | - Q: a bit string representation of the octet length of P (plaintext) |
---|
212 | - q The octet length of the binary representation of the octet length of the payload |
---|
213 | - A nonce (N), n The octet length of the where n+q=15. |
---|
214 | - Flags: most significant octet containing four flags for control information, |
---|
215 | - t The octet length of the MAC. |
---|
216 | (##) B1 block (header) : associated data length(a) concatenated with Associated Data (A) |
---|
217 | the associated data length expressed in bytes (a) defined as below: |
---|
218 | - If 0 < a < 216-28, then it is encoded as [a]16, i.e. two octets |
---|
219 | - If 216-28 < a < 232, then it is encoded as 0xff || 0xfe || [a]32, i.e. six octets |
---|
220 | - If 232 < a < 264, then it is encoded as 0xff || 0xff || [a]64, i.e. ten octets |
---|
221 | (##) CTRx block : control blocks |
---|
222 | - Generation of CTR1 from first block B0 information : |
---|
223 | equal to B0 with first 5 bits zeroed and most significant bits storing octet |
---|
224 | length of P also zeroed, then incremented by one |
---|
225 | |
---|
226 | Bit Number Register Contents |
---|
227 | ---------- --------------- ----------- |
---|
228 | 127 ...96 CRYP_IV1R[31:0] B0[127:96], where Q length bits are set to 0, except for |
---|
229 | bit 0 that is set to 1 |
---|
230 | 95 ...64 CRYP_IV1L[31:0] B0[95:64] |
---|
231 | 63 ... 32 CRYP_IV0R[31:0] B0[63:32] |
---|
232 | 31 ... 0 CRYP_IV0L[31:0] B0[31:0], where flag bits set to 0 |
---|
233 | |
---|
234 | - Generation of CTR0: same as CTR1 with bit[0] set to zero. |
---|
235 | |
---|
236 | (#) Four phases are performed in CCM for CRYP1 peripheral: |
---|
237 | (##) Init phase: peripheral prepares the GCM hash subkey (H) and do the IV processing |
---|
238 | (##) Header phase: peripheral processes the Additional Authenticated Data (AAD), with hash |
---|
239 | computation only. |
---|
240 | (##) Payload phase: peripheral processes the plaintext (P) with hash computation + keystream |
---|
241 | encryption + data XORing. It works in a similar way for ciphertext (C). |
---|
242 | (##) Final phase: peripheral generates the authenticated tag (T) using the last block of data. |
---|
243 | (#) CCM in TinyAES peripheral: |
---|
244 | (##) To perform message payload encryption or decryption AES is configured in CTR mode. |
---|
245 | (##) For authentication two phases are performed : |
---|
246 | - Header phase: peripheral processes the Additional Authenticated Data (AAD) first, then the cleartext message |
---|
247 | only cleartext payload (not the ciphertext payload) is used and no outpout. |
---|
248 | (##) Final phase: peripheral generates the authenticated tag (T) using the last block of data. |
---|
249 | |
---|
250 | *** Callback registration *** |
---|
251 | ============================= |
---|
252 | |
---|
253 | [..] |
---|
254 | The compilation define USE_HAL_CRYP_REGISTER_CALLBACKS when set to 1 |
---|
255 | allows the user to configure dynamically the driver callbacks. |
---|
256 | Use Functions @ref HAL_CRYP_RegisterCallback() or HAL_CRYP_RegisterXXXCallback() |
---|
257 | to register an interrupt callback. |
---|
258 | |
---|
259 | [..] |
---|
260 | Function @ref HAL_CRYP_RegisterCallback() allows to register following callbacks: |
---|
261 | (+) InCpltCallback : Input FIFO transfer completed callback. |
---|
262 | (+) OutCpltCallback : Output FIFO transfer completed callback. |
---|
263 | (+) ErrorCallback : callback for error detection. |
---|
264 | (+) MspInitCallback : CRYP MspInit. |
---|
265 | (+) MspDeInitCallback : CRYP MspDeInit. |
---|
266 | This function takes as parameters the HAL peripheral handle, the Callback ID |
---|
267 | and a pointer to the user callback function. |
---|
268 | |
---|
269 | [..] |
---|
270 | Use function @ref HAL_CRYP_UnRegisterCallback() to reset a callback to the default |
---|
271 | weak function. |
---|
272 | @ref HAL_CRYP_UnRegisterCallback() takes as parameters the HAL peripheral handle, |
---|
273 | and the Callback ID. |
---|
274 | This function allows to reset following callbacks: |
---|
275 | (+) InCpltCallback : Input FIFO transfer completed callback. |
---|
276 | (+) OutCpltCallback : Output FIFO transfer completed callback. |
---|
277 | (+) ErrorCallback : callback for error detection. |
---|
278 | (+) MspInitCallback : CRYP MspInit. |
---|
279 | (+) MspDeInitCallback : CRYP MspDeInit. |
---|
280 | |
---|
281 | [..] |
---|
282 | By default, after the @ref HAL_CRYP_Init() and when the state is HAL_CRYP_STATE_RESET |
---|
283 | all callbacks are set to the corresponding weak functions : |
---|
284 | examples @ref HAL_CRYP_InCpltCallback() , @ref HAL_CRYP_OutCpltCallback(). |
---|
285 | Exception done for MspInit and MspDeInit functions that are |
---|
286 | reset to the legacy weak function in the @ref HAL_CRYP_Init()/ @ref HAL_CRYP_DeInit() only when |
---|
287 | these callbacks are null (not registered beforehand). |
---|
288 | if not, MspInit or MspDeInit are not null, the @ref HAL_CRYP_Init() / @ref HAL_CRYP_DeInit() |
---|
289 | keep and use the user MspInit/MspDeInit functions (registered beforehand) |
---|
290 | |
---|
291 | [..] |
---|
292 | Callbacks can be registered/unregistered in HAL_CRYP_STATE_READY state only. |
---|
293 | Exception done MspInit/MspDeInit callbacks that can be registered/unregistered |
---|
294 | in HAL_CRYP_STATE_READY or HAL_CRYP_STATE_RESET state, |
---|
295 | thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. |
---|
296 | In that case first register the MspInit/MspDeInit user callbacks |
---|
297 | using @ref HAL_CRYP_RegisterCallback() before calling @ref HAL_CRYP_DeInit() |
---|
298 | or @ref HAL_CRYP_Init() function. |
---|
299 | |
---|
300 | [..] |
---|
301 | When The compilation define USE_HAL_CRYP_REGISTER_CALLBACKS is set to 0 or |
---|
302 | not defined, the callback registration feature is not available and all callbacks |
---|
303 | are set to the corresponding weak functions. |
---|
304 | |
---|
305 | |
---|
306 | *** Suspend/Resume feature *** |
---|
307 | ============================== |
---|
308 | |
---|
309 | [..] |
---|
310 | The compilation define USE_HAL_CRYP_SUSPEND_RESUME when set to 1 |
---|
311 | allows the user to resort to the suspend/resume feature. |
---|
312 | A low priority block processing can be suspended to process a high priority block |
---|
313 | instead. When the high priority block processing is over, the low priority block |
---|
314 | processing can be resumed, restarting from the point where it was suspended. This |
---|
315 | feature is applicable only in non-blocking interrupt mode. |
---|
316 | |
---|
317 | [..] User must resort to HAL_CRYP_Suspend() to suspend the low priority block |
---|
318 | processing. This API manages the hardware block processing suspension and saves all the |
---|
319 | internal data that will be needed to restart later on. Upon HAL_CRYP_Suspend() completion, |
---|
320 | the user can launch the processing of any other block (high priority block processing). |
---|
321 | |
---|
322 | [..] When the high priority block processing is over, user must invoke HAL_CRYP_Resume() |
---|
323 | to resume the low priority block processing. Ciphering (or deciphering) restarts from |
---|
324 | the suspension point and ends as usual. |
---|
325 | |
---|
326 | [..] HAL_CRYP_Suspend() reports an error when the suspension request is sent too late |
---|
327 | (i.e when the low priority block processing is about to end). There is no use to |
---|
328 | suspend the tag generation processing for authentication algorithms. |
---|
329 | |
---|
330 | [..] |
---|
331 | (@) If the key is written out of HAL scope (case pKey pointer set to NULL by the user), |
---|
332 | the block processing suspension/resumption mechanism is NOT applicable. |
---|
333 | |
---|
334 | [..] |
---|
335 | (@) If the Key and Initialization Vector are configured only once and configuration is |
---|
336 | skipped for consecutive processings (case KeyIVConfigSkip set to CRYP_KEYIVCONFIG_ONCE), |
---|
337 | the block processing suspension/resumption mechanism is NOT applicable. |
---|
338 | |
---|
339 | @endverbatim |
---|
340 | ****************************************************************************** |
---|
341 | * @attention |
---|
342 | * |
---|
343 | * <h2><center>© Copyright (c) 2018 STMicroelectronics. |
---|
344 | * All rights reserved.</center></h2> |
---|
345 | * |
---|
346 | * This software component is licensed by ST under BSD 3-Clause license, |
---|
347 | * the "License"; You may not use this file except in compliance with the |
---|
348 | * License. You may obtain a copy of the License at: |
---|
349 | * opensource.org/licenses/BSD-3-Clause |
---|
350 | * |
---|
351 | ****************************************************************************** |
---|
352 | */ |
---|
353 | |
---|
354 | /* Includes ------------------------------------------------------------------*/ |
---|
355 | #include "stm32g0xx_hal.h" |
---|
356 | |
---|
357 | /** @addtogroup STM32G0xx_HAL_Driver |
---|
358 | * @{ |
---|
359 | */ |
---|
360 | |
---|
361 | /** @addtogroup CRYP |
---|
362 | * @{ |
---|
363 | */ |
---|
364 | |
---|
365 | #if defined(AES) |
---|
366 | #ifdef HAL_CRYP_MODULE_ENABLED |
---|
367 | |
---|
368 | /* Private typedef -----------------------------------------------------------*/ |
---|
369 | /* Private define ------------------------------------------------------------*/ |
---|
370 | /** @addtogroup CRYP_Private_Defines |
---|
371 | * @{ |
---|
372 | */ |
---|
373 | #define CRYP_TIMEOUT_KEYPREPARATION 82U /* The latency of key preparation operation is 82 clock cycles.*/ |
---|
374 | #define CRYP_TIMEOUT_GCMCCMINITPHASE 299U /* The latency of GCM/CCM init phase to prepare hash subkey is 299 clock cycles.*/ |
---|
375 | #define CRYP_TIMEOUT_GCMCCMHEADERPHASE 290U /* The latency of GCM/CCM header phase is 290 clock cycles.*/ |
---|
376 | |
---|
377 | #define CRYP_PHASE_READY 0x00000001U /*!< CRYP peripheral is ready for initialization. */ |
---|
378 | #define CRYP_PHASE_PROCESS 0x00000002U /*!< CRYP peripheral is in processing phase */ |
---|
379 | #if (USE_HAL_CRYP_SUSPEND_RESUME == 1U) |
---|
380 | #define CRYP_PHASE_HEADER_SUSPENDED 0x00000004U /*!< GCM/GMAC/CCM header phase is suspended */ |
---|
381 | #define CRYP_PHASE_PAYLOAD_SUSPENDED 0x00000005U /*!< GCM/CCM payload phase is suspended */ |
---|
382 | #endif /* USE_HAL_CRYP_SUSPEND_RESUME */ |
---|
383 | |
---|
384 | #define CRYP_OPERATINGMODE_ENCRYPT 0x00000000U /*!< Encryption mode(Mode 1) */ |
---|
385 | #define CRYP_OPERATINGMODE_KEYDERIVATION AES_CR_MODE_0 /*!< Key derivation mode only used when performing ECB and CBC decryptions (Mode 2) */ |
---|
386 | #define CRYP_OPERATINGMODE_DECRYPT AES_CR_MODE_1 /*!< Decryption (Mode 3) */ |
---|
387 | #define CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT AES_CR_MODE /*!< Key derivation and decryption only used when performing ECB and CBC decryptions (Mode 4) */ |
---|
388 | #define CRYP_PHASE_INIT 0x00000000U /*!< GCM/GMAC (or CCM) init phase */ |
---|
389 | #define CRYP_PHASE_HEADER AES_CR_GCMPH_0 /*!< GCM/GMAC or CCM header phase */ |
---|
390 | #define CRYP_PHASE_PAYLOAD AES_CR_GCMPH_1 /*!< GCM(/CCM) payload phase */ |
---|
391 | #define CRYP_PHASE_FINAL AES_CR_GCMPH /*!< GCM/GMAC or CCM final phase */ |
---|
392 | |
---|
393 | /* CTR1 information to use in CCM algorithm */ |
---|
394 | #define CRYP_CCM_CTR1_0 0x07FFFFFFU |
---|
395 | #define CRYP_CCM_CTR1_1 0xFFFFFF00U |
---|
396 | #define CRYP_CCM_CTR1_2 0x00000001U |
---|
397 | |
---|
398 | /** |
---|
399 | * @} |
---|
400 | */ |
---|
401 | |
---|
402 | /* Private macro -------------------------------------------------------------*/ |
---|
403 | /** @addtogroup CRYP_Private_Macros |
---|
404 | * @{ |
---|
405 | */ |
---|
406 | |
---|
407 | #define CRYP_SET_PHASE(__HANDLE__, __PHASE__) do{(__HANDLE__)->Instance->CR &= (uint32_t)(~AES_CR_GCMPH);\ |
---|
408 | (__HANDLE__)->Instance->CR |= (uint32_t)(__PHASE__);\ |
---|
409 | }while(0U) |
---|
410 | |
---|
411 | /** |
---|
412 | * @} |
---|
413 | */ |
---|
414 | |
---|
415 | /* Private struct -------------------------------------------------------------*/ |
---|
416 | /* Private variables ---------------------------------------------------------*/ |
---|
417 | /* Private function prototypes -----------------------------------------------*/ |
---|
418 | /** @addtogroup CRYP_Private_Functions |
---|
419 | * @{ |
---|
420 | */ |
---|
421 | |
---|
422 | static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr); |
---|
423 | static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma); |
---|
424 | static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma); |
---|
425 | static void CRYP_DMAError(DMA_HandleTypeDef *hdma); |
---|
426 | static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint32_t KeySize); |
---|
427 | static void CRYP_AES_IT(CRYP_HandleTypeDef *hcryp); |
---|
428 | static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint32_t Timeout); |
---|
429 | static void CRYP_GCMCCM_SetPayloadPhase_IT(CRYP_HandleTypeDef *hcryp); |
---|
430 | static void CRYP_GCMCCM_SetHeaderPhase_IT(CRYP_HandleTypeDef *hcryp); |
---|
431 | static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase_DMA(CRYP_HandleTypeDef *hcryp); |
---|
432 | static HAL_StatusTypeDef CRYP_AESGCM_Process_DMA(CRYP_HandleTypeDef *hcryp); |
---|
433 | static HAL_StatusTypeDef CRYP_AESGCM_Process_IT(CRYP_HandleTypeDef *hcryp); |
---|
434 | static HAL_StatusTypeDef CRYP_AESGCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout); |
---|
435 | static HAL_StatusTypeDef CRYP_AESCCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout); |
---|
436 | static HAL_StatusTypeDef CRYP_AESCCM_Process_IT(CRYP_HandleTypeDef *hcryp); |
---|
437 | static HAL_StatusTypeDef CRYP_AESCCM_Process_DMA(CRYP_HandleTypeDef *hcryp); |
---|
438 | static void CRYP_AES_ProcessData(CRYP_HandleTypeDef *hcrypt, uint32_t Timeout); |
---|
439 | static HAL_StatusTypeDef CRYP_AES_Encrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout); |
---|
440 | static HAL_StatusTypeDef CRYP_AES_Decrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout); |
---|
441 | static HAL_StatusTypeDef CRYP_AES_Decrypt_IT(CRYP_HandleTypeDef *hcryp); |
---|
442 | static HAL_StatusTypeDef CRYP_AES_Encrypt_IT(CRYP_HandleTypeDef *hcryp); |
---|
443 | static HAL_StatusTypeDef CRYP_AES_Decrypt_DMA(CRYP_HandleTypeDef *hcryp); |
---|
444 | static HAL_StatusTypeDef CRYP_WaitOnCCFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout); |
---|
445 | #if (USE_HAL_CRYP_SUSPEND_RESUME == 1U) |
---|
446 | static void CRYP_Read_IVRegisters(CRYP_HandleTypeDef *hcryp, uint32_t* Output); |
---|
447 | static void CRYP_Write_IVRegisters(CRYP_HandleTypeDef *hcryp, uint32_t* Input); |
---|
448 | static void CRYP_Read_SuspendRegisters(CRYP_HandleTypeDef *hcryp, uint32_t* Output); |
---|
449 | static void CRYP_Write_SuspendRegisters(CRYP_HandleTypeDef *hcryp, uint32_t* Input); |
---|
450 | static void CRYP_Read_KeyRegisters(CRYP_HandleTypeDef *hcryp, uint32_t* Output, uint32_t KeySize); |
---|
451 | static void CRYP_Write_KeyRegisters(CRYP_HandleTypeDef *hcryp, uint32_t* Input, uint32_t KeySize); |
---|
452 | static void CRYP_PhaseProcessingResume(CRYP_HandleTypeDef *hcryp); |
---|
453 | #endif /* USE_HAL_CRYP_SUSPEND_RESUME */ |
---|
454 | |
---|
455 | |
---|
456 | /** |
---|
457 | * @} |
---|
458 | */ |
---|
459 | |
---|
460 | /* Exported functions ---------------------------------------------------------*/ |
---|
461 | |
---|
462 | /** @addtogroup CRYP_Exported_Functions |
---|
463 | * @{ |
---|
464 | */ |
---|
465 | |
---|
466 | /** @defgroup CRYP_Exported_Functions_Group1 Initialization and de-initialization functions |
---|
467 | * @brief Initialization and Configuration functions. |
---|
468 | * |
---|
469 | @verbatim |
---|
470 | ======================================================================================== |
---|
471 | ##### Initialization, de-initialization and Set and Get configuration functions ##### |
---|
472 | ======================================================================================== |
---|
473 | [..] This section provides functions allowing to: |
---|
474 | (+) Initialize the CRYP |
---|
475 | (+) DeInitialize the CRYP |
---|
476 | (+) Initialize the CRYP MSP |
---|
477 | (+) DeInitialize the CRYP MSP |
---|
478 | (+) configure CRYP (HAL_CRYP_SetConfig) with the specified parameters in the CRYP_ConfigTypeDef |
---|
479 | Parameters which are configured in This section are : |
---|
480 | (+) Key size |
---|
481 | (+) Data Type : 32,16, 8 or 1bit |
---|
482 | (+) AlgoMode : |
---|
483 | - for CRYP1 peripheral : |
---|
484 | ECB and CBC in DES/TDES Standard |
---|
485 | ECB,CBC,CTR,GCM/GMAC and CCM in AES Standard. |
---|
486 | - for TinyAES2 peripheral, only ECB,CBC,CTR,GCM/GMAC and CCM in AES Standard are supported. |
---|
487 | (+) Get CRYP configuration (HAL_CRYP_GetConfig) from the specified parameters in the CRYP_HandleTypeDef |
---|
488 | |
---|
489 | @endverbatim |
---|
490 | * @{ |
---|
491 | */ |
---|
492 | |
---|
493 | /** |
---|
494 | * @brief Initializes the CRYP according to the specified |
---|
495 | * parameters in the CRYP_ConfigTypeDef and creates the associated handle. |
---|
496 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
497 | * the configuration information for CRYP module |
---|
498 | * @retval HAL status |
---|
499 | */ |
---|
500 | HAL_StatusTypeDef HAL_CRYP_Init(CRYP_HandleTypeDef *hcryp) |
---|
501 | { |
---|
502 | /* Check the CRYP handle allocation */ |
---|
503 | if (hcryp == NULL) |
---|
504 | { |
---|
505 | return HAL_ERROR; |
---|
506 | } |
---|
507 | |
---|
508 | /* Check parameters */ |
---|
509 | assert_param(IS_CRYP_KEYSIZE(hcryp->Init.KeySize)); |
---|
510 | assert_param(IS_CRYP_DATATYPE(hcryp->Init.DataType)); |
---|
511 | assert_param(IS_CRYP_ALGORITHM(hcryp->Init.Algorithm)); |
---|
512 | assert_param(IS_CRYP_INIT(hcryp->Init.KeyIVConfigSkip)); |
---|
513 | |
---|
514 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
---|
515 | if (hcryp->State == HAL_CRYP_STATE_RESET) |
---|
516 | { |
---|
517 | /* Allocate lock resource and initialize it */ |
---|
518 | hcryp->Lock = HAL_UNLOCKED; |
---|
519 | |
---|
520 | hcryp->InCpltCallback = HAL_CRYP_InCpltCallback; /* Legacy weak InCpltCallback */ |
---|
521 | hcryp->OutCpltCallback = HAL_CRYP_OutCpltCallback; /* Legacy weak OutCpltCallback */ |
---|
522 | hcryp->ErrorCallback = HAL_CRYP_ErrorCallback; /* Legacy weak ErrorCallback */ |
---|
523 | |
---|
524 | if (hcryp->MspInitCallback == NULL) |
---|
525 | { |
---|
526 | hcryp->MspInitCallback = HAL_CRYP_MspInit; /* Legacy weak MspInit */ |
---|
527 | } |
---|
528 | |
---|
529 | /* Init the low level hardware */ |
---|
530 | hcryp->MspInitCallback(hcryp); |
---|
531 | } |
---|
532 | #else |
---|
533 | if (hcryp->State == HAL_CRYP_STATE_RESET) |
---|
534 | { |
---|
535 | /* Allocate lock resource and initialize it */ |
---|
536 | hcryp->Lock = HAL_UNLOCKED; |
---|
537 | |
---|
538 | /* Init the low level hardware */ |
---|
539 | HAL_CRYP_MspInit(hcryp); |
---|
540 | } |
---|
541 | #endif /* (USE_HAL_CRYP_REGISTER_CALLBACKS) */ |
---|
542 | |
---|
543 | /* Set the key size (This bit field is do not care in the DES or TDES modes), data type and Algorithm */ |
---|
544 | MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE | AES_CR_KEYSIZE | AES_CR_CHMOD, hcryp->Init.DataType | hcryp->Init.KeySize | hcryp->Init.Algorithm); |
---|
545 | |
---|
546 | /* Reset Error Code field */ |
---|
547 | hcryp->ErrorCode = HAL_CRYP_ERROR_NONE; |
---|
548 | |
---|
549 | /* Reset peripheral Key and IV configuration flag */ |
---|
550 | hcryp->KeyIVConfig = 0U; |
---|
551 | |
---|
552 | /* Change the CRYP state */ |
---|
553 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
554 | |
---|
555 | /* Set the default CRYP phase */ |
---|
556 | hcryp->Phase = CRYP_PHASE_READY; |
---|
557 | |
---|
558 | /* Return function status */ |
---|
559 | return HAL_OK; |
---|
560 | } |
---|
561 | |
---|
562 | /** |
---|
563 | * @brief De-Initializes the CRYP peripheral. |
---|
564 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
565 | * the configuration information for CRYP module |
---|
566 | * @retval HAL status |
---|
567 | */ |
---|
568 | HAL_StatusTypeDef HAL_CRYP_DeInit(CRYP_HandleTypeDef *hcryp) |
---|
569 | { |
---|
570 | /* Check the CRYP handle allocation */ |
---|
571 | if (hcryp == NULL) |
---|
572 | { |
---|
573 | return HAL_ERROR; |
---|
574 | } |
---|
575 | |
---|
576 | /* Set the default CRYP phase */ |
---|
577 | hcryp->Phase = CRYP_PHASE_READY; |
---|
578 | |
---|
579 | /* Reset CrypInCount and CrypOutCount */ |
---|
580 | hcryp->CrypInCount = 0; |
---|
581 | hcryp->CrypOutCount = 0; |
---|
582 | hcryp->CrypHeaderCount = 0; |
---|
583 | |
---|
584 | /* Disable the CRYP peripheral clock */ |
---|
585 | __HAL_CRYP_DISABLE(hcryp); |
---|
586 | |
---|
587 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
---|
588 | |
---|
589 | if (hcryp->MspDeInitCallback == NULL) |
---|
590 | { |
---|
591 | hcryp->MspDeInitCallback = HAL_CRYP_MspDeInit; /* Legacy weak MspDeInit */ |
---|
592 | } |
---|
593 | /* DeInit the low level hardware */ |
---|
594 | hcryp->MspDeInitCallback(hcryp); |
---|
595 | |
---|
596 | #else |
---|
597 | |
---|
598 | /* DeInit the low level hardware: CLOCK, NVIC.*/ |
---|
599 | HAL_CRYP_MspDeInit(hcryp); |
---|
600 | |
---|
601 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
---|
602 | |
---|
603 | /* Change the CRYP state */ |
---|
604 | hcryp->State = HAL_CRYP_STATE_RESET; |
---|
605 | |
---|
606 | /* Release Lock */ |
---|
607 | __HAL_UNLOCK(hcryp); |
---|
608 | |
---|
609 | /* Return function status */ |
---|
610 | return HAL_OK; |
---|
611 | } |
---|
612 | |
---|
613 | /** |
---|
614 | * @brief Configure the CRYP according to the specified |
---|
615 | * parameters in the CRYP_ConfigTypeDef |
---|
616 | * @param hcryp pointer to a CRYP_HandleTypeDef structure |
---|
617 | * @param pConf pointer to a CRYP_ConfigTypeDef structure that contains |
---|
618 | * the configuration information for CRYP module |
---|
619 | * @retval HAL status |
---|
620 | */ |
---|
621 | HAL_StatusTypeDef HAL_CRYP_SetConfig(CRYP_HandleTypeDef *hcryp, CRYP_ConfigTypeDef *pConf) |
---|
622 | { |
---|
623 | /* Check the CRYP handle allocation */ |
---|
624 | if ((hcryp == NULL) || (pConf == NULL)) |
---|
625 | { |
---|
626 | return HAL_ERROR; |
---|
627 | } |
---|
628 | |
---|
629 | /* Check parameters */ |
---|
630 | assert_param(IS_CRYP_KEYSIZE(pConf->KeySize)); |
---|
631 | assert_param(IS_CRYP_DATATYPE(pConf->DataType)); |
---|
632 | assert_param(IS_CRYP_ALGORITHM(pConf->Algorithm)); |
---|
633 | |
---|
634 | if (hcryp->State == HAL_CRYP_STATE_READY) |
---|
635 | { |
---|
636 | /* Change the CRYP state */ |
---|
637 | hcryp->State = HAL_CRYP_STATE_BUSY; |
---|
638 | |
---|
639 | /* Process locked */ |
---|
640 | __HAL_LOCK(hcryp); |
---|
641 | |
---|
642 | /* Set CRYP parameters */ |
---|
643 | hcryp->Init.DataType = pConf->DataType; |
---|
644 | hcryp->Init.pKey = pConf->pKey; |
---|
645 | hcryp->Init.Algorithm = pConf->Algorithm; |
---|
646 | hcryp->Init.KeySize = pConf->KeySize; |
---|
647 | hcryp->Init.pInitVect = pConf->pInitVect; |
---|
648 | hcryp->Init.Header = pConf->Header; |
---|
649 | hcryp->Init.HeaderSize = pConf->HeaderSize; |
---|
650 | hcryp->Init.B0 = pConf->B0; |
---|
651 | hcryp->Init.DataWidthUnit = pConf->DataWidthUnit; |
---|
652 | |
---|
653 | /* Set the key size (This bit field is do not care in the DES or TDES modes), data type and operating mode*/ |
---|
654 | MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE | AES_CR_KEYSIZE | AES_CR_CHMOD, hcryp->Init.DataType | hcryp->Init.KeySize | hcryp->Init.Algorithm); |
---|
655 | |
---|
656 | /*clear error flags*/ |
---|
657 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_ERR_CLEAR); |
---|
658 | |
---|
659 | /* Process Unlocked */ |
---|
660 | __HAL_UNLOCK(hcryp); |
---|
661 | |
---|
662 | /* Reset Error Code field */ |
---|
663 | hcryp->ErrorCode = HAL_CRYP_ERROR_NONE; |
---|
664 | |
---|
665 | /* Change the CRYP state */ |
---|
666 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
667 | |
---|
668 | /* Set the default CRYP phase */ |
---|
669 | hcryp->Phase = CRYP_PHASE_READY; |
---|
670 | |
---|
671 | /* Return function status */ |
---|
672 | return HAL_OK; |
---|
673 | } |
---|
674 | else |
---|
675 | { |
---|
676 | /* Process Unlocked */ |
---|
677 | __HAL_UNLOCK(hcryp); |
---|
678 | |
---|
679 | /* Busy error code field */ |
---|
680 | hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY; |
---|
681 | return HAL_ERROR; |
---|
682 | } |
---|
683 | } |
---|
684 | |
---|
685 | /** |
---|
686 | * @brief Get CRYP Configuration parameters in associated handle. |
---|
687 | * @param pConf pointer to a CRYP_ConfigTypeDef structure |
---|
688 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
689 | * the configuration information for CRYP module |
---|
690 | * @retval HAL status |
---|
691 | */ |
---|
692 | HAL_StatusTypeDef HAL_CRYP_GetConfig(CRYP_HandleTypeDef *hcryp, CRYP_ConfigTypeDef *pConf) |
---|
693 | { |
---|
694 | /* Check the CRYP handle allocation */ |
---|
695 | if ((hcryp == NULL) || (pConf == NULL)) |
---|
696 | { |
---|
697 | return HAL_ERROR; |
---|
698 | } |
---|
699 | |
---|
700 | if (hcryp->State == HAL_CRYP_STATE_READY) |
---|
701 | { |
---|
702 | /* Change the CRYP state */ |
---|
703 | hcryp->State = HAL_CRYP_STATE_BUSY; |
---|
704 | |
---|
705 | /* Process locked */ |
---|
706 | __HAL_LOCK(hcryp); |
---|
707 | |
---|
708 | /* Get CRYP parameters */ |
---|
709 | pConf->DataType = hcryp->Init.DataType; |
---|
710 | pConf->pKey = hcryp->Init.pKey; |
---|
711 | pConf->Algorithm = hcryp->Init.Algorithm; |
---|
712 | pConf->KeySize = hcryp->Init.KeySize ; |
---|
713 | pConf->pInitVect = hcryp->Init.pInitVect; |
---|
714 | pConf->Header = hcryp->Init.Header ; |
---|
715 | pConf->HeaderSize = hcryp->Init.HeaderSize; |
---|
716 | pConf->B0 = hcryp->Init.B0; |
---|
717 | pConf->DataWidthUnit = hcryp->Init.DataWidthUnit; |
---|
718 | |
---|
719 | /* Process Unlocked */ |
---|
720 | __HAL_UNLOCK(hcryp); |
---|
721 | |
---|
722 | /* Change the CRYP state */ |
---|
723 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
724 | |
---|
725 | /* Return function status */ |
---|
726 | return HAL_OK; |
---|
727 | } |
---|
728 | else |
---|
729 | { |
---|
730 | /* Process Unlocked */ |
---|
731 | __HAL_UNLOCK(hcryp); |
---|
732 | |
---|
733 | /* Busy error code field */ |
---|
734 | hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY; |
---|
735 | return HAL_ERROR; |
---|
736 | } |
---|
737 | } |
---|
738 | /** |
---|
739 | * @brief Initializes the CRYP MSP. |
---|
740 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
741 | * the configuration information for CRYP module |
---|
742 | * @retval None |
---|
743 | */ |
---|
744 | __weak void HAL_CRYP_MspInit(CRYP_HandleTypeDef *hcryp) |
---|
745 | { |
---|
746 | /* Prevent unused argument(s) compilation warning */ |
---|
747 | UNUSED(hcryp); |
---|
748 | |
---|
749 | /* NOTE : This function Should not be modified, when the callback is needed, |
---|
750 | the HAL_CRYP_MspInit could be implemented in the user file |
---|
751 | */ |
---|
752 | } |
---|
753 | |
---|
754 | /** |
---|
755 | * @brief DeInitializes CRYP MSP. |
---|
756 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
757 | * the configuration information for CRYP module |
---|
758 | * @retval None |
---|
759 | */ |
---|
760 | __weak void HAL_CRYP_MspDeInit(CRYP_HandleTypeDef *hcryp) |
---|
761 | { |
---|
762 | /* Prevent unused argument(s) compilation warning */ |
---|
763 | UNUSED(hcryp); |
---|
764 | |
---|
765 | /* NOTE : This function Should not be modified, when the callback is needed, |
---|
766 | the HAL_CRYP_MspDeInit could be implemented in the user file |
---|
767 | */ |
---|
768 | } |
---|
769 | |
---|
770 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
---|
771 | /** |
---|
772 | * @brief Register a User CRYP Callback |
---|
773 | * To be used instead of the weak predefined callback |
---|
774 | * @param hcryp cryp handle |
---|
775 | * @param CallbackID ID of the callback to be registered |
---|
776 | * This parameter can be one of the following values: |
---|
777 | * @arg @ref HAL_CRYP_INPUT_COMPLETE_CB_ID Input FIFO transfer completed callback ID |
---|
778 | * @arg @ref HAL_CRYP_OUTPUT_COMPLETE_CB_ID Output FIFO transfer completed callback ID |
---|
779 | * @arg @ref HAL_CRYP_ERROR_CB_ID Error callback ID |
---|
780 | * @arg @ref HAL_CRYP_MSPINIT_CB_ID MspInit callback ID |
---|
781 | * @arg @ref HAL_CRYP_MSPDEINIT_CB_ID MspDeInit callback ID |
---|
782 | * @param pCallback pointer to the Callback function |
---|
783 | * @retval status |
---|
784 | */ |
---|
785 | HAL_StatusTypeDef HAL_CRYP_RegisterCallback(CRYP_HandleTypeDef *hcryp, HAL_CRYP_CallbackIDTypeDef CallbackID, pCRYP_CallbackTypeDef pCallback) |
---|
786 | { |
---|
787 | HAL_StatusTypeDef status = HAL_OK; |
---|
788 | |
---|
789 | if (pCallback == NULL) |
---|
790 | { |
---|
791 | /* Update the error code */ |
---|
792 | hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK; |
---|
793 | |
---|
794 | return HAL_ERROR; |
---|
795 | } |
---|
796 | /* Process locked */ |
---|
797 | __HAL_LOCK(hcryp); |
---|
798 | |
---|
799 | if (hcryp->State == HAL_CRYP_STATE_READY) |
---|
800 | { |
---|
801 | switch (CallbackID) |
---|
802 | { |
---|
803 | case HAL_CRYP_INPUT_COMPLETE_CB_ID : |
---|
804 | hcryp->InCpltCallback = pCallback; |
---|
805 | break; |
---|
806 | |
---|
807 | case HAL_CRYP_OUTPUT_COMPLETE_CB_ID : |
---|
808 | hcryp->OutCpltCallback = pCallback; |
---|
809 | break; |
---|
810 | |
---|
811 | case HAL_CRYP_ERROR_CB_ID : |
---|
812 | hcryp->ErrorCallback = pCallback; |
---|
813 | break; |
---|
814 | |
---|
815 | case HAL_CRYP_MSPINIT_CB_ID : |
---|
816 | hcryp->MspInitCallback = pCallback; |
---|
817 | break; |
---|
818 | |
---|
819 | case HAL_CRYP_MSPDEINIT_CB_ID : |
---|
820 | hcryp->MspDeInitCallback = pCallback; |
---|
821 | break; |
---|
822 | |
---|
823 | default : |
---|
824 | /* Update the error code */ |
---|
825 | hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK; |
---|
826 | /* Return error status */ |
---|
827 | status = HAL_ERROR; |
---|
828 | break; |
---|
829 | } |
---|
830 | } |
---|
831 | else if (hcryp->State == HAL_CRYP_STATE_RESET) |
---|
832 | { |
---|
833 | switch (CallbackID) |
---|
834 | { |
---|
835 | case HAL_CRYP_MSPINIT_CB_ID : |
---|
836 | hcryp->MspInitCallback = pCallback; |
---|
837 | break; |
---|
838 | |
---|
839 | case HAL_CRYP_MSPDEINIT_CB_ID : |
---|
840 | hcryp->MspDeInitCallback = pCallback; |
---|
841 | break; |
---|
842 | |
---|
843 | default : |
---|
844 | /* Update the error code */ |
---|
845 | hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK; |
---|
846 | /* Return error status */ |
---|
847 | status = HAL_ERROR; |
---|
848 | break; |
---|
849 | } |
---|
850 | } |
---|
851 | else |
---|
852 | { |
---|
853 | /* Update the error code */ |
---|
854 | hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK; |
---|
855 | /* Return error status */ |
---|
856 | status = HAL_ERROR; |
---|
857 | } |
---|
858 | |
---|
859 | /* Release Lock */ |
---|
860 | __HAL_UNLOCK(hcryp); |
---|
861 | |
---|
862 | return status; |
---|
863 | } |
---|
864 | |
---|
865 | /** |
---|
866 | * @brief Unregister an CRYP Callback |
---|
867 | * CRYP callback is redirected to the weak predefined callback |
---|
868 | * @param hcryp cryp handle |
---|
869 | * @param CallbackID ID of the callback to be unregistered |
---|
870 | * This parameter can be one of the following values: |
---|
871 | * @arg @ref HAL_CRYP_INPUT_COMPLETE_CB_ID Input FIFO transfer completed callback ID |
---|
872 | * @arg @ref HAL_CRYP_OUTPUT_COMPLETE_CB_ID Output FIFO transfer completed callback ID |
---|
873 | * @arg @ref HAL_CRYP_ERROR_CB_ID Error callback ID |
---|
874 | * @arg @ref HAL_CRYP_MSPINIT_CB_ID MspInit callback ID |
---|
875 | * @arg @ref HAL_CRYP_MSPDEINIT_CB_ID MspDeInit callback ID |
---|
876 | * @retval status |
---|
877 | */ |
---|
878 | HAL_StatusTypeDef HAL_CRYP_UnRegisterCallback(CRYP_HandleTypeDef *hcryp, HAL_CRYP_CallbackIDTypeDef CallbackID) |
---|
879 | { |
---|
880 | HAL_StatusTypeDef status = HAL_OK; |
---|
881 | |
---|
882 | /* Process locked */ |
---|
883 | __HAL_LOCK(hcryp); |
---|
884 | |
---|
885 | if (hcryp->State == HAL_CRYP_STATE_READY) |
---|
886 | { |
---|
887 | switch (CallbackID) |
---|
888 | { |
---|
889 | case HAL_CRYP_INPUT_COMPLETE_CB_ID : |
---|
890 | hcryp->InCpltCallback = HAL_CRYP_InCpltCallback; /* Legacy weak InCpltCallback */ |
---|
891 | break; |
---|
892 | |
---|
893 | case HAL_CRYP_OUTPUT_COMPLETE_CB_ID : |
---|
894 | hcryp->OutCpltCallback = HAL_CRYP_OutCpltCallback; /* Legacy weak OutCpltCallback */ |
---|
895 | break; |
---|
896 | |
---|
897 | case HAL_CRYP_ERROR_CB_ID : |
---|
898 | hcryp->ErrorCallback = HAL_CRYP_ErrorCallback; /* Legacy weak ErrorCallback */ |
---|
899 | break; |
---|
900 | |
---|
901 | case HAL_CRYP_MSPINIT_CB_ID : |
---|
902 | hcryp->MspInitCallback = HAL_CRYP_MspInit; |
---|
903 | break; |
---|
904 | |
---|
905 | case HAL_CRYP_MSPDEINIT_CB_ID : |
---|
906 | hcryp->MspDeInitCallback = HAL_CRYP_MspDeInit; |
---|
907 | break; |
---|
908 | |
---|
909 | default : |
---|
910 | /* Update the error code */ |
---|
911 | hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK; |
---|
912 | /* Return error status */ |
---|
913 | status = HAL_ERROR; |
---|
914 | break; |
---|
915 | } |
---|
916 | } |
---|
917 | else if (hcryp->State == HAL_CRYP_STATE_RESET) |
---|
918 | { |
---|
919 | switch (CallbackID) |
---|
920 | { |
---|
921 | case HAL_CRYP_MSPINIT_CB_ID : |
---|
922 | hcryp->MspInitCallback = HAL_CRYP_MspInit; |
---|
923 | break; |
---|
924 | |
---|
925 | case HAL_CRYP_MSPDEINIT_CB_ID : |
---|
926 | hcryp->MspDeInitCallback = HAL_CRYP_MspDeInit; |
---|
927 | break; |
---|
928 | |
---|
929 | default : |
---|
930 | /* Update the error code */ |
---|
931 | hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK; |
---|
932 | /* Return error status */ |
---|
933 | status = HAL_ERROR; |
---|
934 | break; |
---|
935 | } |
---|
936 | } |
---|
937 | else |
---|
938 | { |
---|
939 | /* Update the error code */ |
---|
940 | hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;; |
---|
941 | /* Return error status */ |
---|
942 | status = HAL_ERROR; |
---|
943 | } |
---|
944 | |
---|
945 | /* Release Lock */ |
---|
946 | __HAL_UNLOCK(hcryp); |
---|
947 | |
---|
948 | return status; |
---|
949 | } |
---|
950 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
---|
951 | |
---|
952 | #if (USE_HAL_CRYP_SUSPEND_RESUME == 1U) |
---|
953 | /** |
---|
954 | * @brief Request CRYP processing suspension when in interruption mode. |
---|
955 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
956 | * the configuration information for CRYP module. |
---|
957 | * @note Set the handle field SuspendRequest to the appropriate value so that |
---|
958 | * the on-going CRYP processing is suspended as soon as the required |
---|
959 | * conditions are met. |
---|
960 | * @note HAL_CRYP_ProcessSuspend() can only be invoked when the processing is done |
---|
961 | * in non-blocking interrupt mode. |
---|
962 | * @note It is advised not to suspend the CRYP processing when the DMA controller |
---|
963 | * is managing the data transfer. |
---|
964 | * @retval None |
---|
965 | */ |
---|
966 | void HAL_CRYP_ProcessSuspend(CRYP_HandleTypeDef *hcryp) |
---|
967 | { |
---|
968 | /* Set Handle SuspendRequest field */ |
---|
969 | hcryp->SuspendRequest = HAL_CRYP_SUSPEND; |
---|
970 | } |
---|
971 | |
---|
972 | |
---|
973 | |
---|
974 | /** |
---|
975 | * @brief CRYP processing suspension and peripheral internal parameters storage. |
---|
976 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
977 | * the configuration information for CRYP module |
---|
978 | * @note peripheral internal parameters are stored to be readily available when |
---|
979 | * suspended processing is resumed later on. |
---|
980 | * @retval HAL status |
---|
981 | */ |
---|
982 | HAL_StatusTypeDef HAL_CRYP_Suspend(CRYP_HandleTypeDef *hcryp) |
---|
983 | { |
---|
984 | /* Request suspension */ |
---|
985 | HAL_CRYP_ProcessSuspend(hcryp); |
---|
986 | |
---|
987 | while ((HAL_CRYP_GetState(hcryp) != HAL_CRYP_STATE_SUSPENDED) && \ |
---|
988 | (HAL_CRYP_GetState(hcryp) != HAL_CRYP_STATE_READY)); |
---|
989 | |
---|
990 | if (HAL_CRYP_GetState(hcryp) == HAL_CRYP_STATE_READY) |
---|
991 | { |
---|
992 | /* Processing was already over or was about to end. No suspension done */ |
---|
993 | return HAL_ERROR; |
---|
994 | } |
---|
995 | else |
---|
996 | { |
---|
997 | /* Suspend Processing */ |
---|
998 | |
---|
999 | /* If authentication algorithms on-going, carry out first saving steps |
---|
1000 | before disable the peripheral */ |
---|
1001 | if ((hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC) || \ |
---|
1002 | (hcryp->Init.Algorithm == CRYP_AES_CCM)) |
---|
1003 | { |
---|
1004 | /* Save Suspension registers */ |
---|
1005 | CRYP_Read_SuspendRegisters(hcryp, hcryp->SUSPxR_saved); |
---|
1006 | /* Save Key */ |
---|
1007 | CRYP_Read_KeyRegisters(hcryp, hcryp->Key_saved, hcryp->Init.KeySize); |
---|
1008 | /* Save IV */ |
---|
1009 | CRYP_Read_IVRegisters(hcryp, hcryp->IV_saved); |
---|
1010 | } |
---|
1011 | /* Disable AES */ |
---|
1012 | __HAL_CRYP_DISABLE(hcryp); |
---|
1013 | |
---|
1014 | /* Save low-priority block CRYP handle parameters */ |
---|
1015 | hcryp->Init_saved = hcryp->Init; |
---|
1016 | hcryp->pCrypInBuffPtr_saved = hcryp->pCrypInBuffPtr; |
---|
1017 | hcryp->pCrypOutBuffPtr_saved = hcryp->pCrypOutBuffPtr; |
---|
1018 | hcryp->CrypInCount_saved = hcryp->CrypInCount; |
---|
1019 | hcryp->CrypOutCount_saved = hcryp->CrypOutCount; |
---|
1020 | hcryp->Phase_saved = hcryp->Phase; |
---|
1021 | hcryp->State_saved = hcryp->State; |
---|
1022 | hcryp->Size_saved = ( (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD) ? hcryp->Size /4 : hcryp->Size); |
---|
1023 | hcryp->AutoKeyDerivation_saved = hcryp->AutoKeyDerivation; |
---|
1024 | hcryp->CrypHeaderCount_saved = hcryp->CrypHeaderCount; |
---|
1025 | hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE; |
---|
1026 | |
---|
1027 | if ((hcryp->Init.Algorithm == CRYP_AES_CBC) || \ |
---|
1028 | (hcryp->Init.Algorithm == CRYP_AES_CTR)) |
---|
1029 | { |
---|
1030 | /* Save Initialisation Vector registers */ |
---|
1031 | CRYP_Read_IVRegisters(hcryp, hcryp->IV_saved); |
---|
1032 | } |
---|
1033 | |
---|
1034 | /* Save Control register */ |
---|
1035 | hcryp->CR_saved = hcryp->Instance->CR; |
---|
1036 | |
---|
1037 | } |
---|
1038 | return HAL_OK; |
---|
1039 | } |
---|
1040 | |
---|
1041 | |
---|
1042 | /** |
---|
1043 | * @brief CRYP processing resumption. |
---|
1044 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
1045 | * the configuration information for CRYP module |
---|
1046 | * @note Processing restarts at the exact point where it was suspended, based |
---|
1047 | * on the parameters saved at suspension time. |
---|
1048 | * @retval HAL status |
---|
1049 | */ |
---|
1050 | HAL_StatusTypeDef HAL_CRYP_Resume(CRYP_HandleTypeDef *hcryp) |
---|
1051 | { |
---|
1052 | if (hcryp->State_saved != HAL_CRYP_STATE_SUSPENDED) |
---|
1053 | { |
---|
1054 | /* CRYP was not suspended */ |
---|
1055 | return HAL_ERROR; |
---|
1056 | } |
---|
1057 | else |
---|
1058 | { |
---|
1059 | |
---|
1060 | /* Restore low-priority block CRYP handle parameters */ |
---|
1061 | hcryp->Init = hcryp->Init_saved; |
---|
1062 | hcryp->State = hcryp->State_saved; |
---|
1063 | |
---|
1064 | /* Chaining algorithms case */ |
---|
1065 | if ((hcryp->Init_saved.Algorithm == CRYP_AES_ECB) || \ |
---|
1066 | (hcryp->Init_saved.Algorithm == CRYP_AES_CBC) || \ |
---|
1067 | (hcryp->Init_saved.Algorithm == CRYP_AES_CTR)) |
---|
1068 | { |
---|
1069 | /* Restore low-priority block CRYP handle parameters */ |
---|
1070 | hcryp->AutoKeyDerivation = hcryp->AutoKeyDerivation_saved; |
---|
1071 | |
---|
1072 | if ((hcryp->Init.Algorithm == CRYP_AES_CBC) || \ |
---|
1073 | (hcryp->Init.Algorithm == CRYP_AES_CTR)) |
---|
1074 | { |
---|
1075 | hcryp->Init.pInitVect = hcryp->IV_saved; |
---|
1076 | } |
---|
1077 | __HAL_CRYP_DISABLE(hcryp); |
---|
1078 | if (HAL_CRYP_Init(hcryp) != HAL_OK) |
---|
1079 | { |
---|
1080 | return HAL_ERROR; |
---|
1081 | } |
---|
1082 | } |
---|
1083 | else /* Authentication algorithms case */ |
---|
1084 | { |
---|
1085 | /* Restore low-priority block CRYP handle parameters */ |
---|
1086 | hcryp->Phase = hcryp->Phase_saved; |
---|
1087 | hcryp->CrypHeaderCount = hcryp->CrypHeaderCount_saved; |
---|
1088 | |
---|
1089 | /* Disable AES and write-back SUSPxR registers */; |
---|
1090 | __HAL_CRYP_DISABLE(hcryp); |
---|
1091 | /* Restore AES Suspend Registers */ |
---|
1092 | CRYP_Write_SuspendRegisters(hcryp, hcryp->SUSPxR_saved); |
---|
1093 | /* Restore Control, Key and IV Registers, then enable AES */ |
---|
1094 | hcryp->Instance->CR = hcryp->CR_saved; |
---|
1095 | CRYP_Write_KeyRegisters(hcryp, hcryp->Key_saved, hcryp->Init.KeySize); |
---|
1096 | CRYP_Write_IVRegisters(hcryp, hcryp->IV_saved); |
---|
1097 | __HAL_CRYP_ENABLE_IT(hcryp,CRYP_IT_CCFIE | CRYP_IT_ERRIE); |
---|
1098 | __HAL_CRYP_ENABLE(hcryp); |
---|
1099 | |
---|
1100 | /* At the same time, set handle state back to READY to be able to resume the AES calculations |
---|
1101 | without the processing APIs returning HAL_BUSY when called. */ |
---|
1102 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
1103 | } |
---|
1104 | |
---|
1105 | |
---|
1106 | /* Resume low-priority block processing under IT */ |
---|
1107 | hcryp->ResumingFlag = 1U; |
---|
1108 | if (READ_BIT(hcryp->CR_saved, AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT) |
---|
1109 | { |
---|
1110 | if (HAL_CRYP_Encrypt_IT(hcryp, hcryp->pCrypInBuffPtr_saved, hcryp->Size_saved, hcryp->pCrypOutBuffPtr_saved) != HAL_OK) |
---|
1111 | { |
---|
1112 | return HAL_ERROR; |
---|
1113 | } |
---|
1114 | } |
---|
1115 | else |
---|
1116 | { |
---|
1117 | if (HAL_CRYP_Decrypt_IT(hcryp, hcryp->pCrypInBuffPtr_saved, hcryp->Size_saved, hcryp->pCrypOutBuffPtr_saved) != HAL_OK) |
---|
1118 | { |
---|
1119 | return HAL_ERROR; |
---|
1120 | } |
---|
1121 | } |
---|
1122 | } |
---|
1123 | return HAL_OK; |
---|
1124 | } |
---|
1125 | #endif /* defined (USE_HAL_CRYP_SUSPEND_RESUME) */ |
---|
1126 | |
---|
1127 | /** |
---|
1128 | * @} |
---|
1129 | */ |
---|
1130 | |
---|
1131 | /** @defgroup CRYP_Exported_Functions_Group2 Encryption Decryption functions |
---|
1132 | * @brief Encryption Decryption functions. |
---|
1133 | * |
---|
1134 | @verbatim |
---|
1135 | ============================================================================== |
---|
1136 | ##### Encrypt Decrypt functions ##### |
---|
1137 | ============================================================================== |
---|
1138 | [..] This section provides API allowing to Encrypt/Decrypt Data following |
---|
1139 | Standard DES/TDES or AES, and Algorithm configured by the user: |
---|
1140 | (+) Standard DES/TDES only supported by CRYP1 peripheral, below list of Algorithm supported : |
---|
1141 | - Electronic Code Book(ECB) |
---|
1142 | - Cipher Block Chaining (CBC) |
---|
1143 | (+) Standard AES supported by CRYP1 peripheral & TinyAES, list of Algorithm supported: |
---|
1144 | - Electronic Code Book(ECB) |
---|
1145 | - Cipher Block Chaining (CBC) |
---|
1146 | - Counter mode (CTR) |
---|
1147 | - Cipher Block Chaining (CBC) |
---|
1148 | - Counter mode (CTR) |
---|
1149 | - Galois/counter mode (GCM) |
---|
1150 | - Counter with Cipher Block Chaining-Message(CCM) |
---|
1151 | [..] Three processing functions are available: |
---|
1152 | (+) Polling mode : HAL_CRYP_Encrypt & HAL_CRYP_Decrypt |
---|
1153 | (+) Interrupt mode : HAL_CRYP_Encrypt_IT & HAL_CRYP_Decrypt_IT |
---|
1154 | (+) DMA mode : HAL_CRYP_Encrypt_DMA & HAL_CRYP_Decrypt_DMA |
---|
1155 | |
---|
1156 | @endverbatim |
---|
1157 | * @{ |
---|
1158 | */ |
---|
1159 | |
---|
1160 | /** |
---|
1161 | * @brief Encryption mode. |
---|
1162 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
1163 | * the configuration information for CRYP module |
---|
1164 | * @param Input Pointer to the input buffer (plaintext) |
---|
1165 | * @param Size Length of the plaintext buffer in word. |
---|
1166 | * @param Output Pointer to the output buffer(ciphertext) |
---|
1167 | * @param Timeout Specify Timeout value |
---|
1168 | * @retval HAL status |
---|
1169 | */ |
---|
1170 | HAL_StatusTypeDef HAL_CRYP_Encrypt(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output, uint32_t Timeout) |
---|
1171 | { |
---|
1172 | uint32_t algo; |
---|
1173 | HAL_StatusTypeDef status; |
---|
1174 | |
---|
1175 | if (hcryp->State == HAL_CRYP_STATE_READY) |
---|
1176 | { |
---|
1177 | /* Change state Busy */ |
---|
1178 | hcryp->State = HAL_CRYP_STATE_BUSY; |
---|
1179 | |
---|
1180 | /* Process locked */ |
---|
1181 | __HAL_LOCK(hcryp); |
---|
1182 | |
---|
1183 | /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/ |
---|
1184 | hcryp->CrypInCount = 0U; |
---|
1185 | hcryp->CrypOutCount = 0U; |
---|
1186 | hcryp->pCrypInBuffPtr = Input; |
---|
1187 | hcryp->pCrypOutBuffPtr = Output; |
---|
1188 | |
---|
1189 | /* Calculate Size parameter in Byte*/ |
---|
1190 | if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD) |
---|
1191 | { |
---|
1192 | hcryp->Size = Size * 4U; |
---|
1193 | } |
---|
1194 | else |
---|
1195 | { |
---|
1196 | hcryp->Size = Size; |
---|
1197 | } |
---|
1198 | |
---|
1199 | /* Set the operating mode*/ |
---|
1200 | MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT); |
---|
1201 | |
---|
1202 | /* algo get algorithm selected */ |
---|
1203 | algo = hcryp->Instance->CR & AES_CR_CHMOD; |
---|
1204 | |
---|
1205 | switch (algo) |
---|
1206 | { |
---|
1207 | |
---|
1208 | case CRYP_AES_ECB: |
---|
1209 | case CRYP_AES_CBC: |
---|
1210 | case CRYP_AES_CTR: |
---|
1211 | |
---|
1212 | /* AES encryption */ |
---|
1213 | status = CRYP_AES_Encrypt(hcryp, Timeout); |
---|
1214 | break; |
---|
1215 | |
---|
1216 | case CRYP_AES_GCM_GMAC: |
---|
1217 | |
---|
1218 | /* AES GCM encryption */ |
---|
1219 | status = CRYP_AESGCM_Process(hcryp, Timeout) ; |
---|
1220 | break; |
---|
1221 | |
---|
1222 | case CRYP_AES_CCM: |
---|
1223 | |
---|
1224 | /* AES CCM encryption */ |
---|
1225 | status = CRYP_AESCCM_Process(hcryp, Timeout); |
---|
1226 | break; |
---|
1227 | |
---|
1228 | default: |
---|
1229 | hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED; |
---|
1230 | status = HAL_ERROR; |
---|
1231 | break; |
---|
1232 | } |
---|
1233 | |
---|
1234 | if (status == HAL_OK) |
---|
1235 | { |
---|
1236 | /* Change the CRYP peripheral state */ |
---|
1237 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
1238 | |
---|
1239 | /* Process unlocked */ |
---|
1240 | __HAL_UNLOCK(hcryp); |
---|
1241 | } |
---|
1242 | } |
---|
1243 | else |
---|
1244 | { |
---|
1245 | /* Busy error code field */ |
---|
1246 | hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY; |
---|
1247 | status = HAL_ERROR; |
---|
1248 | } |
---|
1249 | |
---|
1250 | /* Return function status */ |
---|
1251 | return status; |
---|
1252 | } |
---|
1253 | |
---|
1254 | /** |
---|
1255 | * @brief Decryption mode. |
---|
1256 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
1257 | * the configuration information for CRYP module |
---|
1258 | * @param Input Pointer to the input buffer (ciphertext ) |
---|
1259 | * @param Size Length of the plaintext buffer in word. |
---|
1260 | * @param Output Pointer to the output buffer(plaintext) |
---|
1261 | * @param Timeout Specify Timeout value |
---|
1262 | * @retval HAL status |
---|
1263 | */ |
---|
1264 | HAL_StatusTypeDef HAL_CRYP_Decrypt(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output, uint32_t Timeout) |
---|
1265 | { |
---|
1266 | HAL_StatusTypeDef status; |
---|
1267 | uint32_t algo; |
---|
1268 | |
---|
1269 | if (hcryp->State == HAL_CRYP_STATE_READY) |
---|
1270 | { |
---|
1271 | /* Change state Busy */ |
---|
1272 | hcryp->State = HAL_CRYP_STATE_BUSY; |
---|
1273 | |
---|
1274 | /* Process locked */ |
---|
1275 | __HAL_LOCK(hcryp); |
---|
1276 | |
---|
1277 | /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/ |
---|
1278 | hcryp->CrypInCount = 0U; |
---|
1279 | hcryp->CrypOutCount = 0U; |
---|
1280 | hcryp->pCrypInBuffPtr = Input; |
---|
1281 | hcryp->pCrypOutBuffPtr = Output; |
---|
1282 | |
---|
1283 | /* Calculate Size parameter in Byte*/ |
---|
1284 | if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD) |
---|
1285 | { |
---|
1286 | hcryp->Size = Size * 4U; |
---|
1287 | } |
---|
1288 | else |
---|
1289 | { |
---|
1290 | hcryp->Size = Size; |
---|
1291 | } |
---|
1292 | |
---|
1293 | /* Set Decryption operating mode*/ |
---|
1294 | MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT); |
---|
1295 | |
---|
1296 | /* algo get algorithm selected */ |
---|
1297 | algo = hcryp->Instance->CR & AES_CR_CHMOD; |
---|
1298 | |
---|
1299 | switch (algo) |
---|
1300 | { |
---|
1301 | |
---|
1302 | case CRYP_AES_ECB: |
---|
1303 | case CRYP_AES_CBC: |
---|
1304 | case CRYP_AES_CTR: |
---|
1305 | |
---|
1306 | /* AES decryption */ |
---|
1307 | status = CRYP_AES_Decrypt(hcryp, Timeout); |
---|
1308 | break; |
---|
1309 | |
---|
1310 | case CRYP_AES_GCM_GMAC: |
---|
1311 | |
---|
1312 | /* AES GCM decryption */ |
---|
1313 | status = CRYP_AESGCM_Process(hcryp, Timeout) ; |
---|
1314 | break; |
---|
1315 | |
---|
1316 | case CRYP_AES_CCM: |
---|
1317 | |
---|
1318 | /* AES CCM decryption */ |
---|
1319 | status = CRYP_AESCCM_Process(hcryp, Timeout); |
---|
1320 | break; |
---|
1321 | |
---|
1322 | default: |
---|
1323 | hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED; |
---|
1324 | status = HAL_ERROR; |
---|
1325 | break; |
---|
1326 | } |
---|
1327 | |
---|
1328 | if (status == HAL_OK) |
---|
1329 | { |
---|
1330 | /* Change the CRYP peripheral state */ |
---|
1331 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
1332 | |
---|
1333 | /* Process unlocked */ |
---|
1334 | __HAL_UNLOCK(hcryp); |
---|
1335 | } |
---|
1336 | } |
---|
1337 | else |
---|
1338 | { |
---|
1339 | /* Busy error code field */ |
---|
1340 | hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY; |
---|
1341 | status = HAL_ERROR; |
---|
1342 | } |
---|
1343 | |
---|
1344 | /* Return function status */ |
---|
1345 | return status; |
---|
1346 | } |
---|
1347 | |
---|
1348 | /** |
---|
1349 | * @brief Encryption in interrupt mode. |
---|
1350 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
1351 | * the configuration information for CRYP module |
---|
1352 | * @param Input Pointer to the input buffer (plaintext) |
---|
1353 | * @param Size Length of the plaintext buffer in word |
---|
1354 | * @param Output Pointer to the output buffer(ciphertext) |
---|
1355 | * @retval HAL status |
---|
1356 | */ |
---|
1357 | HAL_StatusTypeDef HAL_CRYP_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output) |
---|
1358 | { |
---|
1359 | HAL_StatusTypeDef status; |
---|
1360 | uint32_t algo; |
---|
1361 | |
---|
1362 | if (hcryp->State == HAL_CRYP_STATE_READY) |
---|
1363 | { |
---|
1364 | /* Change state Busy */ |
---|
1365 | hcryp->State = HAL_CRYP_STATE_BUSY; |
---|
1366 | |
---|
1367 | /* Process locked */ |
---|
1368 | __HAL_LOCK(hcryp); |
---|
1369 | |
---|
1370 | /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/ |
---|
1371 | #if (USE_HAL_CRYP_SUSPEND_RESUME == 1U) |
---|
1372 | if (hcryp->ResumingFlag == 1U) |
---|
1373 | { |
---|
1374 | hcryp->ResumingFlag = 0U; |
---|
1375 | if (hcryp->Phase != CRYP_PHASE_HEADER_SUSPENDED) |
---|
1376 | { |
---|
1377 | hcryp->CrypInCount = hcryp->CrypInCount_saved; |
---|
1378 | hcryp->CrypOutCount = hcryp->CrypOutCount_saved; |
---|
1379 | } |
---|
1380 | else |
---|
1381 | { |
---|
1382 | hcryp->CrypInCount = 0U; |
---|
1383 | hcryp->CrypOutCount = 0U; |
---|
1384 | } |
---|
1385 | } |
---|
1386 | else |
---|
1387 | #endif /* USE_HAL_CRYP_SUSPEND_RESUME */ |
---|
1388 | { |
---|
1389 | hcryp->CrypInCount = 0U; |
---|
1390 | hcryp->CrypOutCount = 0U; |
---|
1391 | } |
---|
1392 | |
---|
1393 | hcryp->pCrypInBuffPtr = Input; |
---|
1394 | hcryp->pCrypOutBuffPtr = Output; |
---|
1395 | |
---|
1396 | /* Calculate Size parameter in Byte*/ |
---|
1397 | if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD) |
---|
1398 | { |
---|
1399 | hcryp->Size = Size * 4U; |
---|
1400 | } |
---|
1401 | else |
---|
1402 | { |
---|
1403 | hcryp->Size = Size; |
---|
1404 | } |
---|
1405 | |
---|
1406 | /* Set encryption operating mode*/ |
---|
1407 | MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT); |
---|
1408 | |
---|
1409 | /* algo get algorithm selected */ |
---|
1410 | algo = hcryp->Instance->CR & AES_CR_CHMOD; |
---|
1411 | |
---|
1412 | switch (algo) |
---|
1413 | { |
---|
1414 | |
---|
1415 | case CRYP_AES_ECB: |
---|
1416 | case CRYP_AES_CBC: |
---|
1417 | case CRYP_AES_CTR: |
---|
1418 | |
---|
1419 | /* AES encryption */ |
---|
1420 | status = CRYP_AES_Encrypt_IT(hcryp); |
---|
1421 | break; |
---|
1422 | |
---|
1423 | case CRYP_AES_GCM_GMAC: |
---|
1424 | |
---|
1425 | /* AES GCM encryption */ |
---|
1426 | status = CRYP_AESGCM_Process_IT(hcryp) ; |
---|
1427 | break; |
---|
1428 | |
---|
1429 | case CRYP_AES_CCM: |
---|
1430 | |
---|
1431 | /* AES CCM encryption */ |
---|
1432 | status = CRYP_AESCCM_Process_IT(hcryp); |
---|
1433 | break; |
---|
1434 | |
---|
1435 | default: |
---|
1436 | hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED; |
---|
1437 | status = HAL_ERROR; |
---|
1438 | break; |
---|
1439 | } |
---|
1440 | } |
---|
1441 | else |
---|
1442 | { |
---|
1443 | /* Busy error code field */ |
---|
1444 | hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY; |
---|
1445 | status = HAL_ERROR; |
---|
1446 | } |
---|
1447 | |
---|
1448 | /* Return function status */ |
---|
1449 | return status; |
---|
1450 | } |
---|
1451 | |
---|
1452 | /** |
---|
1453 | * @brief Decryption in interrupt mode. |
---|
1454 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
1455 | * the configuration information for CRYP module |
---|
1456 | * @param Input Pointer to the input buffer (ciphertext ) |
---|
1457 | * @param Size Length of the plaintext buffer in word. |
---|
1458 | * @param Output Pointer to the output buffer(plaintext) |
---|
1459 | * @retval HAL status |
---|
1460 | */ |
---|
1461 | HAL_StatusTypeDef HAL_CRYP_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output) |
---|
1462 | { |
---|
1463 | HAL_StatusTypeDef status; |
---|
1464 | uint32_t algo; |
---|
1465 | |
---|
1466 | if (hcryp->State == HAL_CRYP_STATE_READY) |
---|
1467 | { |
---|
1468 | /* Change state Busy */ |
---|
1469 | hcryp->State = HAL_CRYP_STATE_BUSY; |
---|
1470 | |
---|
1471 | /* Process locked */ |
---|
1472 | __HAL_LOCK(hcryp); |
---|
1473 | |
---|
1474 | /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/ |
---|
1475 | #if (USE_HAL_CRYP_SUSPEND_RESUME == 1U) |
---|
1476 | if (hcryp->ResumingFlag == 1U) |
---|
1477 | { |
---|
1478 | hcryp->ResumingFlag = 0U; |
---|
1479 | if (hcryp->Phase != CRYP_PHASE_HEADER_SUSPENDED) |
---|
1480 | { |
---|
1481 | hcryp->CrypInCount = hcryp->CrypInCount_saved; |
---|
1482 | hcryp->CrypOutCount = hcryp->CrypOutCount_saved; |
---|
1483 | } |
---|
1484 | else |
---|
1485 | { |
---|
1486 | hcryp->CrypInCount = 0U; |
---|
1487 | hcryp->CrypOutCount = 0U; |
---|
1488 | } |
---|
1489 | } |
---|
1490 | else |
---|
1491 | #endif /* USE_HAL_CRYP_SUSPEND_RESUME */ |
---|
1492 | { |
---|
1493 | hcryp->CrypInCount = 0U; |
---|
1494 | hcryp->CrypOutCount = 0U; |
---|
1495 | } |
---|
1496 | hcryp->pCrypInBuffPtr = Input; |
---|
1497 | hcryp->pCrypOutBuffPtr = Output; |
---|
1498 | |
---|
1499 | /* Calculate Size parameter in Byte*/ |
---|
1500 | if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD) |
---|
1501 | { |
---|
1502 | hcryp->Size = Size * 4U; |
---|
1503 | } |
---|
1504 | else |
---|
1505 | { |
---|
1506 | hcryp->Size = Size; |
---|
1507 | } |
---|
1508 | |
---|
1509 | /* Set decryption operating mode*/ |
---|
1510 | MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT); |
---|
1511 | |
---|
1512 | /* algo get algorithm selected */ |
---|
1513 | algo = hcryp->Instance->CR & AES_CR_CHMOD; |
---|
1514 | |
---|
1515 | switch (algo) |
---|
1516 | { |
---|
1517 | |
---|
1518 | case CRYP_AES_ECB: |
---|
1519 | case CRYP_AES_CBC: |
---|
1520 | case CRYP_AES_CTR: |
---|
1521 | |
---|
1522 | /* AES decryption */ |
---|
1523 | status = CRYP_AES_Decrypt_IT(hcryp); |
---|
1524 | break; |
---|
1525 | |
---|
1526 | case CRYP_AES_GCM_GMAC: |
---|
1527 | |
---|
1528 | /* AES GCM decryption */ |
---|
1529 | status = CRYP_AESGCM_Process_IT(hcryp) ; |
---|
1530 | break; |
---|
1531 | |
---|
1532 | case CRYP_AES_CCM: |
---|
1533 | |
---|
1534 | /* AES CCM decryption */ |
---|
1535 | status = CRYP_AESCCM_Process_IT(hcryp); |
---|
1536 | break; |
---|
1537 | |
---|
1538 | default: |
---|
1539 | hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED; |
---|
1540 | status = HAL_ERROR; |
---|
1541 | break; |
---|
1542 | } |
---|
1543 | } |
---|
1544 | else |
---|
1545 | { |
---|
1546 | /* Busy error code field */ |
---|
1547 | hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY; |
---|
1548 | status = HAL_ERROR; |
---|
1549 | } |
---|
1550 | |
---|
1551 | /* Return function status */ |
---|
1552 | return status; |
---|
1553 | } |
---|
1554 | |
---|
1555 | /** |
---|
1556 | * @brief Encryption in DMA mode. |
---|
1557 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
1558 | * the configuration information for CRYP module |
---|
1559 | * @param Input Pointer to the input buffer (plaintext) |
---|
1560 | * @param Size Length of the plaintext buffer in word. |
---|
1561 | * @param Output Pointer to the output buffer(ciphertext) |
---|
1562 | * @retval HAL status |
---|
1563 | */ |
---|
1564 | HAL_StatusTypeDef HAL_CRYP_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output) |
---|
1565 | { |
---|
1566 | HAL_StatusTypeDef status; |
---|
1567 | uint32_t algo; |
---|
1568 | uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ |
---|
1569 | |
---|
1570 | if (hcryp->State == HAL_CRYP_STATE_READY) |
---|
1571 | { |
---|
1572 | /* Change state Busy */ |
---|
1573 | hcryp->State = HAL_CRYP_STATE_BUSY; |
---|
1574 | |
---|
1575 | /* Process locked */ |
---|
1576 | __HAL_LOCK(hcryp); |
---|
1577 | |
---|
1578 | /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/ |
---|
1579 | hcryp->CrypInCount = 0U; |
---|
1580 | hcryp->CrypOutCount = 0U; |
---|
1581 | hcryp->pCrypInBuffPtr = Input; |
---|
1582 | hcryp->pCrypOutBuffPtr = Output; |
---|
1583 | |
---|
1584 | /* Calculate Size parameter in Byte*/ |
---|
1585 | if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD) |
---|
1586 | { |
---|
1587 | hcryp->Size = Size * 4U; |
---|
1588 | } |
---|
1589 | else |
---|
1590 | { |
---|
1591 | hcryp->Size = Size; |
---|
1592 | } |
---|
1593 | |
---|
1594 | /* Set encryption operating mode*/ |
---|
1595 | MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT); |
---|
1596 | |
---|
1597 | /* algo get algorithm selected */ |
---|
1598 | algo = hcryp->Instance->CR & AES_CR_CHMOD; |
---|
1599 | |
---|
1600 | switch (algo) |
---|
1601 | { |
---|
1602 | |
---|
1603 | case CRYP_AES_ECB: |
---|
1604 | case CRYP_AES_CBC: |
---|
1605 | case CRYP_AES_CTR: |
---|
1606 | |
---|
1607 | if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) |
---|
1608 | { |
---|
1609 | if (hcryp->KeyIVConfig == 1U) |
---|
1610 | { |
---|
1611 | /* If the Key and IV configuration has to be done only once |
---|
1612 | and if it has already been done, skip it */ |
---|
1613 | DoKeyIVConfig = 0U; |
---|
1614 | } |
---|
1615 | else |
---|
1616 | { |
---|
1617 | /* If the Key and IV configuration has to be done only once |
---|
1618 | and if it has not been done already, do it and set KeyIVConfig |
---|
1619 | to keep track it won't have to be done again next time */ |
---|
1620 | hcryp->KeyIVConfig = 1U; |
---|
1621 | } |
---|
1622 | } |
---|
1623 | |
---|
1624 | if (DoKeyIVConfig == 1U) |
---|
1625 | { |
---|
1626 | /* Set the Key*/ |
---|
1627 | CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
---|
1628 | |
---|
1629 | /* Set the Initialization Vector*/ |
---|
1630 | if (hcryp->Init.Algorithm != CRYP_AES_ECB) |
---|
1631 | { |
---|
1632 | hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect); |
---|
1633 | hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U); |
---|
1634 | hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U); |
---|
1635 | hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U); |
---|
1636 | } |
---|
1637 | } /* if (DoKeyIVConfig == 1U) */ |
---|
1638 | |
---|
1639 | /* Set the phase */ |
---|
1640 | hcryp->Phase = CRYP_PHASE_PROCESS; |
---|
1641 | |
---|
1642 | /* Start DMA process transfer for AES */ |
---|
1643 | CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), (hcryp->Size / 4U), (uint32_t)(hcryp->pCrypOutBuffPtr)); |
---|
1644 | status = HAL_OK; |
---|
1645 | break; |
---|
1646 | |
---|
1647 | case CRYP_AES_GCM_GMAC: |
---|
1648 | |
---|
1649 | /* AES GCM encryption */ |
---|
1650 | status = CRYP_AESGCM_Process_DMA(hcryp) ; |
---|
1651 | break; |
---|
1652 | |
---|
1653 | case CRYP_AES_CCM: |
---|
1654 | |
---|
1655 | /* AES CCM encryption */ |
---|
1656 | status = CRYP_AESCCM_Process_DMA(hcryp); |
---|
1657 | break; |
---|
1658 | |
---|
1659 | default: |
---|
1660 | hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED; |
---|
1661 | status = HAL_ERROR; |
---|
1662 | break; |
---|
1663 | } |
---|
1664 | } |
---|
1665 | else |
---|
1666 | { |
---|
1667 | /* Busy error code field */ |
---|
1668 | hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY; |
---|
1669 | status = HAL_ERROR; |
---|
1670 | } |
---|
1671 | |
---|
1672 | /* Return function status */ |
---|
1673 | return status; |
---|
1674 | } |
---|
1675 | |
---|
1676 | /** |
---|
1677 | * @brief Decryption in DMA mode. |
---|
1678 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
1679 | * the configuration information for CRYP module |
---|
1680 | * @param Input Pointer to the input buffer (ciphertext ) |
---|
1681 | * @param Size Length of the plaintext buffer in word |
---|
1682 | * @param Output Pointer to the output buffer(plaintext) |
---|
1683 | * @retval HAL status |
---|
1684 | */ |
---|
1685 | HAL_StatusTypeDef HAL_CRYP_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output) |
---|
1686 | { |
---|
1687 | HAL_StatusTypeDef status; |
---|
1688 | uint32_t algo; |
---|
1689 | |
---|
1690 | if (hcryp->State == HAL_CRYP_STATE_READY) |
---|
1691 | { |
---|
1692 | |
---|
1693 | /* Change state Busy */ |
---|
1694 | hcryp->State = HAL_CRYP_STATE_BUSY; |
---|
1695 | |
---|
1696 | /* Process locked */ |
---|
1697 | __HAL_LOCK(hcryp); |
---|
1698 | |
---|
1699 | /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr, pCrypOutBuffPtr and Size parameters*/ |
---|
1700 | hcryp->CrypInCount = 0U; |
---|
1701 | hcryp->CrypOutCount = 0U; |
---|
1702 | hcryp->pCrypInBuffPtr = Input; |
---|
1703 | hcryp->pCrypOutBuffPtr = Output; |
---|
1704 | |
---|
1705 | /* Calculate Size parameter in Byte*/ |
---|
1706 | if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD) |
---|
1707 | { |
---|
1708 | hcryp->Size = Size * 4U; |
---|
1709 | } |
---|
1710 | else |
---|
1711 | { |
---|
1712 | hcryp->Size = Size; |
---|
1713 | } |
---|
1714 | |
---|
1715 | /* Set decryption operating mode*/ |
---|
1716 | MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT); |
---|
1717 | |
---|
1718 | /* algo get algorithm selected */ |
---|
1719 | algo = hcryp->Instance->CR & AES_CR_CHMOD; |
---|
1720 | |
---|
1721 | switch (algo) |
---|
1722 | { |
---|
1723 | |
---|
1724 | case CRYP_AES_ECB: |
---|
1725 | case CRYP_AES_CBC: |
---|
1726 | case CRYP_AES_CTR: |
---|
1727 | |
---|
1728 | /* AES decryption */ |
---|
1729 | status = CRYP_AES_Decrypt_DMA(hcryp); |
---|
1730 | break; |
---|
1731 | |
---|
1732 | case CRYP_AES_GCM_GMAC: |
---|
1733 | |
---|
1734 | /* AES GCM decryption */ |
---|
1735 | status = CRYP_AESGCM_Process_DMA(hcryp) ; |
---|
1736 | break; |
---|
1737 | |
---|
1738 | case CRYP_AES_CCM: |
---|
1739 | |
---|
1740 | /* AES CCM decryption */ |
---|
1741 | status = CRYP_AESCCM_Process_DMA(hcryp); |
---|
1742 | break; |
---|
1743 | |
---|
1744 | default: |
---|
1745 | hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED; |
---|
1746 | status = HAL_ERROR; |
---|
1747 | break; |
---|
1748 | } |
---|
1749 | } |
---|
1750 | else |
---|
1751 | { |
---|
1752 | /* Busy error code field */ |
---|
1753 | hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY; |
---|
1754 | status = HAL_ERROR; |
---|
1755 | } |
---|
1756 | /* Return function status */ |
---|
1757 | return status; |
---|
1758 | } |
---|
1759 | |
---|
1760 | /** |
---|
1761 | * @} |
---|
1762 | */ |
---|
1763 | |
---|
1764 | /** @defgroup CRYP_Exported_Functions_Group3 CRYP IRQ handler management |
---|
1765 | * @brief CRYP IRQ handler. |
---|
1766 | * |
---|
1767 | @verbatim |
---|
1768 | ============================================================================== |
---|
1769 | ##### CRYP IRQ handler management ##### |
---|
1770 | ============================================================================== |
---|
1771 | [..] This section provides CRYP IRQ handler and callback functions. |
---|
1772 | (+) HAL_CRYP_IRQHandler CRYP interrupt request |
---|
1773 | (+) HAL_CRYP_InCpltCallback input data transfer complete callback |
---|
1774 | (+) HAL_CRYP_OutCpltCallback output data transfer complete callback |
---|
1775 | (+) HAL_CRYP_ErrorCallback CRYP error callback |
---|
1776 | (+) HAL_CRYP_GetState return the CRYP state |
---|
1777 | (+) HAL_CRYP_GetError return the CRYP error code |
---|
1778 | @endverbatim |
---|
1779 | * @{ |
---|
1780 | */ |
---|
1781 | |
---|
1782 | /** |
---|
1783 | * @brief This function handles cryptographic interrupt request. |
---|
1784 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
1785 | * the configuration information for CRYP module |
---|
1786 | * @retval None |
---|
1787 | */ |
---|
1788 | void HAL_CRYP_IRQHandler(CRYP_HandleTypeDef *hcryp) |
---|
1789 | { |
---|
1790 | |
---|
1791 | /* Check if error occurred */ |
---|
1792 | if (__HAL_CRYP_GET_IT_SOURCE(hcryp,CRYP_IT_ERRIE) != RESET) |
---|
1793 | { |
---|
1794 | /* If write Error occurred */ |
---|
1795 | if (__HAL_CRYP_GET_FLAG(hcryp,CRYP_IT_WRERR) != RESET) |
---|
1796 | { |
---|
1797 | hcryp->ErrorCode |= HAL_CRYP_ERROR_WRITE; |
---|
1798 | } |
---|
1799 | /* If read Error occurred */ |
---|
1800 | if (__HAL_CRYP_GET_FLAG(hcryp,CRYP_IT_RDERR) != RESET) |
---|
1801 | { |
---|
1802 | hcryp->ErrorCode |= HAL_CRYP_ERROR_READ; |
---|
1803 | } |
---|
1804 | } |
---|
1805 | |
---|
1806 | if (__HAL_CRYP_GET_FLAG(hcryp, CRYP_IT_CCF) != RESET) |
---|
1807 | { |
---|
1808 | if(__HAL_CRYP_GET_IT_SOURCE(hcryp, CRYP_IT_CCFIE) != RESET) |
---|
1809 | { |
---|
1810 | /* Clear computation complete flag */ |
---|
1811 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
---|
1812 | |
---|
1813 | if (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC) |
---|
1814 | { |
---|
1815 | |
---|
1816 | /* if header phase */ |
---|
1817 | if ((hcryp->Instance->CR & CRYP_PHASE_HEADER) == CRYP_PHASE_HEADER) |
---|
1818 | { |
---|
1819 | CRYP_GCMCCM_SetHeaderPhase_IT(hcryp); |
---|
1820 | } |
---|
1821 | else /* if payload phase */ |
---|
1822 | { |
---|
1823 | CRYP_GCMCCM_SetPayloadPhase_IT(hcryp); |
---|
1824 | } |
---|
1825 | } |
---|
1826 | else if (hcryp->Init.Algorithm == CRYP_AES_CCM) |
---|
1827 | { |
---|
1828 | /* if header phase */ |
---|
1829 | if (hcryp->Init.HeaderSize >= hcryp->CrypHeaderCount) |
---|
1830 | { |
---|
1831 | CRYP_GCMCCM_SetHeaderPhase_IT(hcryp); |
---|
1832 | } |
---|
1833 | else /* if payload phase */ |
---|
1834 | { |
---|
1835 | CRYP_GCMCCM_SetPayloadPhase_IT(hcryp); |
---|
1836 | } |
---|
1837 | } |
---|
1838 | else /* AES Algorithm ECB,CBC or CTR*/ |
---|
1839 | { |
---|
1840 | CRYP_AES_IT(hcryp); |
---|
1841 | } |
---|
1842 | } |
---|
1843 | } |
---|
1844 | } |
---|
1845 | |
---|
1846 | /** |
---|
1847 | * @brief Return the CRYP error code. |
---|
1848 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
1849 | * the configuration information for the CRYP peripheral |
---|
1850 | * @retval CRYP error code |
---|
1851 | */ |
---|
1852 | uint32_t HAL_CRYP_GetError(CRYP_HandleTypeDef *hcryp) |
---|
1853 | { |
---|
1854 | return hcryp->ErrorCode; |
---|
1855 | } |
---|
1856 | |
---|
1857 | /** |
---|
1858 | * @brief Returns the CRYP state. |
---|
1859 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
1860 | * the configuration information for CRYP module. |
---|
1861 | * @retval HAL state |
---|
1862 | */ |
---|
1863 | HAL_CRYP_STATETypeDef HAL_CRYP_GetState(CRYP_HandleTypeDef *hcryp) |
---|
1864 | { |
---|
1865 | return hcryp->State; |
---|
1866 | } |
---|
1867 | |
---|
1868 | /** |
---|
1869 | * @brief Input FIFO transfer completed callback. |
---|
1870 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
1871 | * the configuration information for CRYP module. |
---|
1872 | * @retval None |
---|
1873 | */ |
---|
1874 | __weak void HAL_CRYP_InCpltCallback(CRYP_HandleTypeDef *hcryp) |
---|
1875 | { |
---|
1876 | /* Prevent unused argument(s) compilation warning */ |
---|
1877 | UNUSED(hcryp); |
---|
1878 | |
---|
1879 | /* NOTE : This function Should not be modified, when the callback is needed, |
---|
1880 | the HAL_CRYP_InCpltCallback could be implemented in the user file |
---|
1881 | */ |
---|
1882 | } |
---|
1883 | |
---|
1884 | /** |
---|
1885 | * @brief Output FIFO transfer completed callback. |
---|
1886 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
1887 | * the configuration information for CRYP module. |
---|
1888 | * @retval None |
---|
1889 | */ |
---|
1890 | __weak void HAL_CRYP_OutCpltCallback(CRYP_HandleTypeDef *hcryp) |
---|
1891 | { |
---|
1892 | /* Prevent unused argument(s) compilation warning */ |
---|
1893 | UNUSED(hcryp); |
---|
1894 | |
---|
1895 | /* NOTE : This function Should not be modified, when the callback is needed, |
---|
1896 | the HAL_CRYP_OutCpltCallback could be implemented in the user file |
---|
1897 | */ |
---|
1898 | } |
---|
1899 | |
---|
1900 | /** |
---|
1901 | * @brief CRYP error callback. |
---|
1902 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
1903 | * the configuration information for CRYP module. |
---|
1904 | * @retval None |
---|
1905 | */ |
---|
1906 | __weak void HAL_CRYP_ErrorCallback(CRYP_HandleTypeDef *hcryp) |
---|
1907 | { |
---|
1908 | /* Prevent unused argument(s) compilation warning */ |
---|
1909 | UNUSED(hcryp); |
---|
1910 | |
---|
1911 | /* NOTE : This function Should not be modified, when the callback is needed, |
---|
1912 | the HAL_CRYP_ErrorCallback could be implemented in the user file |
---|
1913 | */ |
---|
1914 | } |
---|
1915 | /** |
---|
1916 | * @} |
---|
1917 | */ |
---|
1918 | |
---|
1919 | /** |
---|
1920 | * @} |
---|
1921 | */ |
---|
1922 | |
---|
1923 | /* Private functions ---------------------------------------------------------*/ |
---|
1924 | /** @addtogroup CRYP_Private_Functions |
---|
1925 | * @{ |
---|
1926 | */ |
---|
1927 | |
---|
1928 | /** |
---|
1929 | * @brief Encryption in ECB/CBC & CTR Algorithm with AES Standard |
---|
1930 | * @param hcryp pointer to a CRYP_HandleTypeDef structure |
---|
1931 | * @param Timeout specify Timeout value |
---|
1932 | * @retval HAL status |
---|
1933 | */ |
---|
1934 | static HAL_StatusTypeDef CRYP_AES_Encrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout) |
---|
1935 | { |
---|
1936 | uint16_t incount; /* Temporary CrypInCount Value */ |
---|
1937 | uint16_t outcount; /* Temporary CrypOutCount Value */ |
---|
1938 | uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ |
---|
1939 | |
---|
1940 | if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) |
---|
1941 | { |
---|
1942 | if (hcryp->KeyIVConfig == 1U) |
---|
1943 | { |
---|
1944 | /* If the Key and IV configuration has to be done only once |
---|
1945 | and if it has already been done, skip it */ |
---|
1946 | DoKeyIVConfig = 0U; |
---|
1947 | } |
---|
1948 | else |
---|
1949 | { |
---|
1950 | /* If the Key and IV configuration has to be done only once |
---|
1951 | and if it has not been done already, do it and set KeyIVConfig |
---|
1952 | to keep track it won't have to be done again next time */ |
---|
1953 | hcryp->KeyIVConfig = 1U; |
---|
1954 | } |
---|
1955 | } |
---|
1956 | |
---|
1957 | if (DoKeyIVConfig == 1U) |
---|
1958 | { |
---|
1959 | /* Set the Key*/ |
---|
1960 | CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
---|
1961 | |
---|
1962 | if (hcryp->Init.Algorithm != CRYP_AES_ECB) |
---|
1963 | { |
---|
1964 | /* Set the Initialization Vector*/ |
---|
1965 | hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect); |
---|
1966 | hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U); |
---|
1967 | hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U); |
---|
1968 | hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U); |
---|
1969 | } |
---|
1970 | } /* if (DoKeyIVConfig == 1U) */ |
---|
1971 | |
---|
1972 | /* Set the phase */ |
---|
1973 | hcryp->Phase = CRYP_PHASE_PROCESS; |
---|
1974 | |
---|
1975 | /* Enable CRYP */ |
---|
1976 | __HAL_CRYP_ENABLE(hcryp); |
---|
1977 | |
---|
1978 | incount = hcryp->CrypInCount; |
---|
1979 | outcount = hcryp->CrypOutCount; |
---|
1980 | while ((incount < (hcryp->Size / 4U)) && (outcount < (hcryp->Size / 4U))) |
---|
1981 | { |
---|
1982 | /* Write plain Ddta and get cipher data */ |
---|
1983 | CRYP_AES_ProcessData(hcryp, Timeout); |
---|
1984 | incount = hcryp->CrypInCount; |
---|
1985 | outcount = hcryp->CrypOutCount; |
---|
1986 | } |
---|
1987 | |
---|
1988 | /* Disable CRYP */ |
---|
1989 | __HAL_CRYP_DISABLE(hcryp); |
---|
1990 | |
---|
1991 | /* Change the CRYP state */ |
---|
1992 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
1993 | |
---|
1994 | /* Return function status */ |
---|
1995 | return HAL_OK; |
---|
1996 | } |
---|
1997 | |
---|
1998 | /** |
---|
1999 | * @brief Encryption in ECB/CBC & CTR mode with AES Standard using interrupt mode |
---|
2000 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
2001 | * the configuration information for CRYP module |
---|
2002 | * @retval HAL status |
---|
2003 | */ |
---|
2004 | static HAL_StatusTypeDef CRYP_AES_Encrypt_IT(CRYP_HandleTypeDef *hcryp) |
---|
2005 | { |
---|
2006 | uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ |
---|
2007 | |
---|
2008 | if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) |
---|
2009 | { |
---|
2010 | if (hcryp->KeyIVConfig == 1U) |
---|
2011 | { |
---|
2012 | /* If the Key and IV configuration has to be done only once |
---|
2013 | and if it has already been done, skip it */ |
---|
2014 | DoKeyIVConfig = 0U; |
---|
2015 | } |
---|
2016 | else |
---|
2017 | { |
---|
2018 | /* If the Key and IV configuration has to be done only once |
---|
2019 | and if it has not been done already, do it and set KeyIVConfig |
---|
2020 | to keep track it won't have to be done again next time */ |
---|
2021 | hcryp->KeyIVConfig = 1U; |
---|
2022 | } |
---|
2023 | } |
---|
2024 | |
---|
2025 | if (DoKeyIVConfig == 1U) |
---|
2026 | { |
---|
2027 | /* Set the Key*/ |
---|
2028 | CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
---|
2029 | |
---|
2030 | if (hcryp->Init.Algorithm != CRYP_AES_ECB) |
---|
2031 | { |
---|
2032 | /* Set the Initialization Vector*/ |
---|
2033 | hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect); |
---|
2034 | hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U); |
---|
2035 | hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U); |
---|
2036 | hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U); |
---|
2037 | } |
---|
2038 | } /* if (DoKeyIVConfig == 1U) */ |
---|
2039 | |
---|
2040 | /* Set the phase */ |
---|
2041 | hcryp->Phase = CRYP_PHASE_PROCESS; |
---|
2042 | |
---|
2043 | if (hcryp->Size != 0U) |
---|
2044 | { |
---|
2045 | |
---|
2046 | /* Enable computation complete flag and error interrupts */ |
---|
2047 | __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); |
---|
2048 | |
---|
2049 | /* Enable CRYP */ |
---|
2050 | __HAL_CRYP_ENABLE(hcryp); |
---|
2051 | |
---|
2052 | /* Write the input block in the IN FIFO */ |
---|
2053 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
2054 | hcryp->CrypInCount++; |
---|
2055 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
2056 | hcryp->CrypInCount++; |
---|
2057 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
2058 | hcryp->CrypInCount++; |
---|
2059 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
2060 | hcryp->CrypInCount++; |
---|
2061 | } |
---|
2062 | else |
---|
2063 | { |
---|
2064 | /* Change the CRYP state */ |
---|
2065 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
2066 | |
---|
2067 | /* Process unlocked */ |
---|
2068 | __HAL_UNLOCK(hcryp); |
---|
2069 | } |
---|
2070 | |
---|
2071 | /* Return function status */ |
---|
2072 | return HAL_OK; |
---|
2073 | } |
---|
2074 | |
---|
2075 | /** |
---|
2076 | * @brief Decryption in ECB/CBC & CTR mode with AES Standard |
---|
2077 | * @param hcryp pointer to a CRYP_HandleTypeDef structure |
---|
2078 | * @param Timeout Specify Timeout value |
---|
2079 | * @retval HAL status |
---|
2080 | */ |
---|
2081 | static HAL_StatusTypeDef CRYP_AES_Decrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout) |
---|
2082 | { |
---|
2083 | uint16_t incount; /* Temporary CrypInCount Value */ |
---|
2084 | uint16_t outcount; /* Temporary CrypOutCount Value */ |
---|
2085 | uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ |
---|
2086 | |
---|
2087 | if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) |
---|
2088 | { |
---|
2089 | if (hcryp->KeyIVConfig == 1U) |
---|
2090 | { |
---|
2091 | /* If the Key and IV configuration has to be done only once |
---|
2092 | and if it has already been done, skip it */ |
---|
2093 | DoKeyIVConfig = 0U; |
---|
2094 | } |
---|
2095 | else |
---|
2096 | { |
---|
2097 | /* If the Key and IV configuration has to be done only once |
---|
2098 | and if it has not been done already, do it and set KeyIVConfig |
---|
2099 | to keep track it won't have to be done again next time */ |
---|
2100 | hcryp->KeyIVConfig = 1U; |
---|
2101 | } |
---|
2102 | } |
---|
2103 | |
---|
2104 | if (DoKeyIVConfig == 1U) |
---|
2105 | { |
---|
2106 | /* Key preparation for ECB/CBC */ |
---|
2107 | if (hcryp->Init.Algorithm != CRYP_AES_CTR) /*ECB or CBC*/ |
---|
2108 | { |
---|
2109 | if (hcryp->AutoKeyDerivation == DISABLE)/*Mode 2 Key preparation*/ |
---|
2110 | { |
---|
2111 | /* Set key preparation for decryption operating mode*/ |
---|
2112 | MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION); |
---|
2113 | |
---|
2114 | /* Set the Key*/ |
---|
2115 | CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
---|
2116 | |
---|
2117 | /* Enable CRYP */ |
---|
2118 | __HAL_CRYP_ENABLE(hcryp); |
---|
2119 | |
---|
2120 | /* Wait for CCF flag to be raised */ |
---|
2121 | if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK) |
---|
2122 | { |
---|
2123 | /* Disable the CRYP peripheral clock */ |
---|
2124 | __HAL_CRYP_DISABLE(hcryp); |
---|
2125 | |
---|
2126 | /* Change state & error code*/ |
---|
2127 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
---|
2128 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
2129 | |
---|
2130 | /* Process unlocked */ |
---|
2131 | __HAL_UNLOCK(hcryp); |
---|
2132 | return HAL_ERROR; |
---|
2133 | } |
---|
2134 | /* Clear CCF Flag */ |
---|
2135 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
---|
2136 | |
---|
2137 | /* Return to decryption operating mode(Mode 3)*/ |
---|
2138 | MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT); |
---|
2139 | } |
---|
2140 | else /*Mode 4 : decryption & Key preparation*/ |
---|
2141 | { |
---|
2142 | /* Set the Key*/ |
---|
2143 | CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
---|
2144 | |
---|
2145 | /* Set decryption & Key preparation operating mode*/ |
---|
2146 | MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT); |
---|
2147 | } |
---|
2148 | } |
---|
2149 | else /*Algorithm CTR */ |
---|
2150 | { |
---|
2151 | /* Set the Key*/ |
---|
2152 | CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
---|
2153 | } |
---|
2154 | |
---|
2155 | /* Set IV */ |
---|
2156 | if (hcryp->Init.Algorithm != CRYP_AES_ECB) |
---|
2157 | { |
---|
2158 | /* Set the Initialization Vector*/ |
---|
2159 | hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect); |
---|
2160 | hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U); |
---|
2161 | hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U); |
---|
2162 | hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U); |
---|
2163 | } |
---|
2164 | } /* if (DoKeyIVConfig == 1U) */ |
---|
2165 | |
---|
2166 | /* Set the phase */ |
---|
2167 | hcryp->Phase = CRYP_PHASE_PROCESS; |
---|
2168 | |
---|
2169 | /* Enable CRYP */ |
---|
2170 | __HAL_CRYP_ENABLE(hcryp); |
---|
2171 | |
---|
2172 | incount = hcryp->CrypInCount; |
---|
2173 | outcount = hcryp->CrypOutCount; |
---|
2174 | while ((incount < (hcryp->Size / 4U)) && (outcount < (hcryp->Size / 4U))) |
---|
2175 | { |
---|
2176 | /* Write plain data and get cipher data */ |
---|
2177 | CRYP_AES_ProcessData(hcryp, Timeout); |
---|
2178 | incount = hcryp->CrypInCount; |
---|
2179 | outcount = hcryp->CrypOutCount; |
---|
2180 | } |
---|
2181 | |
---|
2182 | /* Disable CRYP */ |
---|
2183 | __HAL_CRYP_DISABLE(hcryp); |
---|
2184 | |
---|
2185 | /* Change the CRYP state */ |
---|
2186 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
2187 | |
---|
2188 | /* Return function status */ |
---|
2189 | return HAL_OK; |
---|
2190 | } |
---|
2191 | /** |
---|
2192 | * @brief Decryption in ECB/CBC & CTR mode with AES Standard using interrupt mode |
---|
2193 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
2194 | * the configuration information for CRYP module |
---|
2195 | * @retval HAL status |
---|
2196 | */ |
---|
2197 | static HAL_StatusTypeDef CRYP_AES_Decrypt_IT(CRYP_HandleTypeDef *hcryp) |
---|
2198 | { |
---|
2199 | __IO uint32_t count = 0U; |
---|
2200 | uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ |
---|
2201 | |
---|
2202 | if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) |
---|
2203 | { |
---|
2204 | if (hcryp->KeyIVConfig == 1U) |
---|
2205 | { |
---|
2206 | /* If the Key and IV configuration has to be done only once |
---|
2207 | and if it has already been done, skip it */ |
---|
2208 | DoKeyIVConfig = 0U; |
---|
2209 | } |
---|
2210 | else |
---|
2211 | { |
---|
2212 | /* If the Key and IV configuration has to be done only once |
---|
2213 | and if it has not been done already, do it and set KeyIVConfig |
---|
2214 | to keep track it won't have to be done again next time */ |
---|
2215 | hcryp->KeyIVConfig = 1U; |
---|
2216 | } |
---|
2217 | } |
---|
2218 | |
---|
2219 | if (DoKeyIVConfig == 1U) |
---|
2220 | { |
---|
2221 | /* Key preparation for ECB/CBC */ |
---|
2222 | if (hcryp->Init.Algorithm != CRYP_AES_CTR) |
---|
2223 | { |
---|
2224 | if (hcryp->AutoKeyDerivation == DISABLE)/*Mode 2 Key preparation*/ |
---|
2225 | { |
---|
2226 | /* Set key preparation for decryption operating mode*/ |
---|
2227 | MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION); |
---|
2228 | |
---|
2229 | /* Set the Key*/ |
---|
2230 | CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
---|
2231 | |
---|
2232 | /* Enable CRYP */ |
---|
2233 | __HAL_CRYP_ENABLE(hcryp); |
---|
2234 | |
---|
2235 | /* Wait for CCF flag to be raised */ |
---|
2236 | count = CRYP_TIMEOUT_KEYPREPARATION; |
---|
2237 | do |
---|
2238 | { |
---|
2239 | count-- ; |
---|
2240 | if (count == 0U) |
---|
2241 | { |
---|
2242 | /* Disable the CRYP peripheral clock */ |
---|
2243 | __HAL_CRYP_DISABLE(hcryp); |
---|
2244 | |
---|
2245 | /* Change state */ |
---|
2246 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
---|
2247 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
2248 | |
---|
2249 | /* Process unlocked */ |
---|
2250 | __HAL_UNLOCK(hcryp); |
---|
2251 | return HAL_ERROR; |
---|
2252 | } |
---|
2253 | } |
---|
2254 | while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)); |
---|
2255 | |
---|
2256 | /* Clear CCF Flag */ |
---|
2257 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
---|
2258 | |
---|
2259 | /* Return to decryption operating mode(Mode 3)*/ |
---|
2260 | MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT); |
---|
2261 | } |
---|
2262 | else /*Mode 4 : decryption & key preparation*/ |
---|
2263 | { |
---|
2264 | /* Set the Key*/ |
---|
2265 | CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
---|
2266 | |
---|
2267 | /* Set decryption & key preparation operating mode*/ |
---|
2268 | MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT); |
---|
2269 | } |
---|
2270 | } |
---|
2271 | else /*Algorithm CTR */ |
---|
2272 | { |
---|
2273 | /* Set the Key*/ |
---|
2274 | CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
---|
2275 | } |
---|
2276 | |
---|
2277 | /* Set IV */ |
---|
2278 | if (hcryp->Init.Algorithm != CRYP_AES_ECB) |
---|
2279 | { |
---|
2280 | /* Set the Initialization Vector*/ |
---|
2281 | hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect); |
---|
2282 | hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U); |
---|
2283 | hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U); |
---|
2284 | hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U); |
---|
2285 | } |
---|
2286 | } /* if (DoKeyIVConfig == 1U) */ |
---|
2287 | |
---|
2288 | /* Set the phase */ |
---|
2289 | hcryp->Phase = CRYP_PHASE_PROCESS; |
---|
2290 | if (hcryp->Size != 0U) |
---|
2291 | { |
---|
2292 | /* Enable computation complete flag and error interrupts */ |
---|
2293 | __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); |
---|
2294 | |
---|
2295 | /* Enable CRYP */ |
---|
2296 | __HAL_CRYP_ENABLE(hcryp); |
---|
2297 | |
---|
2298 | /* Write the input block in the IN FIFO */ |
---|
2299 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
2300 | hcryp->CrypInCount++; |
---|
2301 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
2302 | hcryp->CrypInCount++; |
---|
2303 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
2304 | hcryp->CrypInCount++; |
---|
2305 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
2306 | hcryp->CrypInCount++; |
---|
2307 | } |
---|
2308 | else |
---|
2309 | { |
---|
2310 | /* Process locked */ |
---|
2311 | __HAL_UNLOCK(hcryp); |
---|
2312 | |
---|
2313 | /* Change the CRYP state */ |
---|
2314 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
2315 | } |
---|
2316 | |
---|
2317 | /* Return function status */ |
---|
2318 | return HAL_OK; |
---|
2319 | } |
---|
2320 | /** |
---|
2321 | * @brief Decryption in ECB/CBC & CTR mode with AES Standard using DMA mode |
---|
2322 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
2323 | * the configuration information for CRYP module |
---|
2324 | * @retval HAL status |
---|
2325 | */ |
---|
2326 | static HAL_StatusTypeDef CRYP_AES_Decrypt_DMA(CRYP_HandleTypeDef *hcryp) |
---|
2327 | { |
---|
2328 | __IO uint32_t count = 0U; |
---|
2329 | uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ |
---|
2330 | |
---|
2331 | if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) |
---|
2332 | { |
---|
2333 | if (hcryp->KeyIVConfig == 1U) |
---|
2334 | { |
---|
2335 | /* If the Key and IV configuration has to be done only once |
---|
2336 | and if it has already been done, skip it */ |
---|
2337 | DoKeyIVConfig = 0U; |
---|
2338 | } |
---|
2339 | else |
---|
2340 | { |
---|
2341 | /* If the Key and IV configuration has to be done only once |
---|
2342 | and if it has not been done already, do it and set KeyIVConfig |
---|
2343 | to keep track it won't have to be done again next time */ |
---|
2344 | hcryp->KeyIVConfig = 1U; |
---|
2345 | } |
---|
2346 | } |
---|
2347 | |
---|
2348 | if (DoKeyIVConfig == 1U) |
---|
2349 | { |
---|
2350 | /* Key preparation for ECB/CBC */ |
---|
2351 | if (hcryp->Init.Algorithm != CRYP_AES_CTR) |
---|
2352 | { |
---|
2353 | if (hcryp->AutoKeyDerivation == DISABLE)/*Mode 2 key preparation*/ |
---|
2354 | { |
---|
2355 | /* Set key preparation for decryption operating mode*/ |
---|
2356 | MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION); |
---|
2357 | |
---|
2358 | /* Set the Key*/ |
---|
2359 | CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
---|
2360 | |
---|
2361 | /* Enable CRYP */ |
---|
2362 | __HAL_CRYP_ENABLE(hcryp); |
---|
2363 | |
---|
2364 | /* Wait for CCF flag to be raised */ |
---|
2365 | count = CRYP_TIMEOUT_KEYPREPARATION; |
---|
2366 | do |
---|
2367 | { |
---|
2368 | count-- ; |
---|
2369 | if (count == 0U) |
---|
2370 | { |
---|
2371 | /* Disable the CRYP peripheral clock */ |
---|
2372 | __HAL_CRYP_DISABLE(hcryp); |
---|
2373 | |
---|
2374 | /* Change state */ |
---|
2375 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
---|
2376 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
2377 | |
---|
2378 | /* Process unlocked */ |
---|
2379 | __HAL_UNLOCK(hcryp); |
---|
2380 | return HAL_ERROR; |
---|
2381 | } |
---|
2382 | } |
---|
2383 | while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)); |
---|
2384 | |
---|
2385 | /* Clear CCF Flag */ |
---|
2386 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
---|
2387 | |
---|
2388 | /* Return to decryption operating mode(Mode 3)*/ |
---|
2389 | MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT); |
---|
2390 | } |
---|
2391 | else /*Mode 4 : decryption & key preparation*/ |
---|
2392 | { |
---|
2393 | /* Set the Key*/ |
---|
2394 | CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
---|
2395 | |
---|
2396 | /* Set decryption & Key preparation operating mode*/ |
---|
2397 | MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT); |
---|
2398 | } |
---|
2399 | } |
---|
2400 | else /*Algorithm CTR */ |
---|
2401 | { |
---|
2402 | /* Set the Key*/ |
---|
2403 | CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
---|
2404 | } |
---|
2405 | |
---|
2406 | if (hcryp->Init.Algorithm != CRYP_AES_ECB) |
---|
2407 | { |
---|
2408 | /* Set the Initialization Vector*/ |
---|
2409 | hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect); |
---|
2410 | hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U); |
---|
2411 | hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U); |
---|
2412 | hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U); |
---|
2413 | } |
---|
2414 | } /* if (DoKeyIVConfig == 1U) */ |
---|
2415 | |
---|
2416 | /* Set the phase */ |
---|
2417 | hcryp->Phase = CRYP_PHASE_PROCESS; |
---|
2418 | |
---|
2419 | if (hcryp->Size != 0U) |
---|
2420 | { |
---|
2421 | /* Set the input and output addresses and start DMA transfer */ |
---|
2422 | CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), (hcryp->Size / 4U), (uint32_t)(hcryp->pCrypOutBuffPtr)); |
---|
2423 | } |
---|
2424 | else |
---|
2425 | { |
---|
2426 | /* Process unlocked */ |
---|
2427 | __HAL_UNLOCK(hcryp); |
---|
2428 | |
---|
2429 | /* Change the CRYP state */ |
---|
2430 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
2431 | } |
---|
2432 | |
---|
2433 | /* Return function status */ |
---|
2434 | return HAL_OK; |
---|
2435 | } |
---|
2436 | |
---|
2437 | |
---|
2438 | /** |
---|
2439 | * @brief DMA CRYP input data process complete callback. |
---|
2440 | * @param hdma DMA handle |
---|
2441 | * @retval None |
---|
2442 | */ |
---|
2443 | static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma) |
---|
2444 | { |
---|
2445 | CRYP_HandleTypeDef *hcryp = (CRYP_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
---|
2446 | |
---|
2447 | /* Stop the DMA transfers to the IN FIFO by clearing to "0" the DMAINEN */ |
---|
2448 | CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAINEN); |
---|
2449 | |
---|
2450 | /* Call input data transfer complete callback */ |
---|
2451 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
---|
2452 | /*Call registered Input complete callback*/ |
---|
2453 | hcryp->InCpltCallback(hcryp); |
---|
2454 | #else |
---|
2455 | /*Call legacy weak Input complete callback*/ |
---|
2456 | HAL_CRYP_InCpltCallback(hcryp); |
---|
2457 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
---|
2458 | } |
---|
2459 | |
---|
2460 | /** |
---|
2461 | * @brief DMA CRYP output data process complete callback. |
---|
2462 | * @param hdma DMA handle |
---|
2463 | * @retval None |
---|
2464 | */ |
---|
2465 | static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma) |
---|
2466 | { |
---|
2467 | uint32_t count; |
---|
2468 | uint32_t npblb; |
---|
2469 | uint32_t lastwordsize; |
---|
2470 | uint32_t temp; /* Temporary CrypOutBuff */ |
---|
2471 | uint32_t mode; |
---|
2472 | |
---|
2473 | CRYP_HandleTypeDef *hcryp = (CRYP_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
---|
2474 | |
---|
2475 | /* Stop the DMA transfers to the OUT FIFO by clearing to "0" the DMAOUTEN */ |
---|
2476 | CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAOUTEN); |
---|
2477 | |
---|
2478 | /* Clear CCF flag */ |
---|
2479 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
---|
2480 | |
---|
2481 | /* Last block transfer in case of GCM or CCM with Size not %16*/ |
---|
2482 | if (((hcryp->Size) % 16U) != 0U) |
---|
2483 | { |
---|
2484 | /* set CrypInCount and CrypOutCount to exact number of word already computed via DMA */ |
---|
2485 | hcryp->CrypInCount = (hcryp->Size / 16U) * 4U; |
---|
2486 | hcryp->CrypOutCount = hcryp->CrypInCount; |
---|
2487 | |
---|
2488 | /* Compute the number of padding bytes in last block of payload */ |
---|
2489 | npblb = ((((uint32_t)hcryp->Size / 16U) + 1U) * 16U) - ((uint32_t)hcryp->Size); |
---|
2490 | |
---|
2491 | mode = hcryp->Instance->CR & AES_CR_MODE; |
---|
2492 | if (((mode == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) || |
---|
2493 | ((mode == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM))) |
---|
2494 | { |
---|
2495 | /* Specify the number of non-valid bytes using NPBLB register*/ |
---|
2496 | MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U); |
---|
2497 | } |
---|
2498 | |
---|
2499 | /* Number of valid words (lastwordsize) in last block */ |
---|
2500 | if ((npblb % 4U) == 0U) |
---|
2501 | { |
---|
2502 | lastwordsize = (16U - npblb) / 4U; |
---|
2503 | } |
---|
2504 | else |
---|
2505 | { |
---|
2506 | lastwordsize = ((16U - npblb) / 4U) + 1U; |
---|
2507 | } |
---|
2508 | |
---|
2509 | /* Last block optionally pad the data with zeros*/ |
---|
2510 | for (count = 0U; count < lastwordsize; count++) |
---|
2511 | { |
---|
2512 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
2513 | hcryp->CrypInCount++; |
---|
2514 | } |
---|
2515 | while (count < 4U) |
---|
2516 | { |
---|
2517 | /* Pad the data with zeros to have a complete block */ |
---|
2518 | hcryp->Instance->DINR = 0x0U; |
---|
2519 | count++; |
---|
2520 | } |
---|
2521 | |
---|
2522 | /*Wait on CCF flag*/ |
---|
2523 | count = CRYP_TIMEOUT_GCMCCMHEADERPHASE; |
---|
2524 | do |
---|
2525 | { |
---|
2526 | count-- ; |
---|
2527 | if (count == 0U) |
---|
2528 | { |
---|
2529 | /* Disable the CRYP peripheral clock */ |
---|
2530 | __HAL_CRYP_DISABLE(hcryp); |
---|
2531 | |
---|
2532 | /* Change state */ |
---|
2533 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
---|
2534 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
2535 | |
---|
2536 | /* Process unlocked */ |
---|
2537 | __HAL_UNLOCK(hcryp); |
---|
2538 | |
---|
2539 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
---|
2540 | /*Call registered error callback*/ |
---|
2541 | hcryp->ErrorCallback(hcryp); |
---|
2542 | #else |
---|
2543 | /*Call legacy weak error callback*/ |
---|
2544 | HAL_CRYP_ErrorCallback(hcryp); |
---|
2545 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
---|
2546 | } |
---|
2547 | } |
---|
2548 | while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)); |
---|
2549 | |
---|
2550 | /* Clear CCF flag */ |
---|
2551 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
---|
2552 | |
---|
2553 | /*Read the output block from the output FIFO */ |
---|
2554 | for (count = 0U; count < 4U; count++) |
---|
2555 | { |
---|
2556 | /* Read the output block from the output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer */ |
---|
2557 | temp = hcryp->Instance->DOUTR; |
---|
2558 | |
---|
2559 | *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp; |
---|
2560 | hcryp->CrypOutCount++; |
---|
2561 | } |
---|
2562 | } |
---|
2563 | |
---|
2564 | if (((hcryp->Init.Algorithm & CRYP_AES_GCM_GMAC) != CRYP_AES_GCM_GMAC) && ((hcryp->Init.Algorithm & CRYP_AES_CCM) != CRYP_AES_CCM)) |
---|
2565 | { |
---|
2566 | /* Disable CRYP (not allowed in GCM)*/ |
---|
2567 | __HAL_CRYP_DISABLE(hcryp); |
---|
2568 | } |
---|
2569 | |
---|
2570 | /* Change the CRYP state to ready */ |
---|
2571 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
2572 | |
---|
2573 | /* Process unlocked */ |
---|
2574 | __HAL_UNLOCK(hcryp); |
---|
2575 | |
---|
2576 | /* Call output data transfer complete callback */ |
---|
2577 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
---|
2578 | /*Call registered Output complete callback*/ |
---|
2579 | hcryp->OutCpltCallback(hcryp); |
---|
2580 | #else |
---|
2581 | /*Call legacy weak Output complete callback*/ |
---|
2582 | HAL_CRYP_OutCpltCallback(hcryp); |
---|
2583 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
---|
2584 | } |
---|
2585 | |
---|
2586 | /** |
---|
2587 | * @brief DMA CRYP communication error callback. |
---|
2588 | * @param hdma DMA handle |
---|
2589 | * @retval None |
---|
2590 | */ |
---|
2591 | static void CRYP_DMAError(DMA_HandleTypeDef *hdma) |
---|
2592 | { |
---|
2593 | CRYP_HandleTypeDef *hcryp = (CRYP_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
---|
2594 | |
---|
2595 | /* Change the CRYP peripheral state */ |
---|
2596 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
2597 | |
---|
2598 | /* DMA error code field */ |
---|
2599 | hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA; |
---|
2600 | |
---|
2601 | /* Clear CCF flag */ |
---|
2602 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
---|
2603 | |
---|
2604 | /* Call error callback */ |
---|
2605 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
---|
2606 | /*Call registered error callback*/ |
---|
2607 | hcryp->ErrorCallback(hcryp); |
---|
2608 | #else |
---|
2609 | /*Call legacy weak error callback*/ |
---|
2610 | HAL_CRYP_ErrorCallback(hcryp); |
---|
2611 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
---|
2612 | } |
---|
2613 | |
---|
2614 | /** |
---|
2615 | * @brief Set the DMA configuration and start the DMA transfer |
---|
2616 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
2617 | * the configuration information for CRYP module |
---|
2618 | * @param inputaddr address of the input buffer |
---|
2619 | * @param Size size of the input buffer, must be a multiple of 16. |
---|
2620 | * @param outputaddr address of the output buffer |
---|
2621 | * @retval None |
---|
2622 | */ |
---|
2623 | static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr) |
---|
2624 | { |
---|
2625 | /* Set the CRYP DMA transfer complete callback */ |
---|
2626 | hcryp->hdmain->XferCpltCallback = CRYP_DMAInCplt; |
---|
2627 | |
---|
2628 | /* Set the DMA input error callback */ |
---|
2629 | hcryp->hdmain->XferErrorCallback = CRYP_DMAError; |
---|
2630 | |
---|
2631 | /* Set the CRYP DMA transfer complete callback */ |
---|
2632 | hcryp->hdmaout->XferCpltCallback = CRYP_DMAOutCplt; |
---|
2633 | |
---|
2634 | /* Set the DMA output error callback */ |
---|
2635 | hcryp->hdmaout->XferErrorCallback = CRYP_DMAError; |
---|
2636 | |
---|
2637 | if ((hcryp->Init.Algorithm & CRYP_AES_GCM_GMAC) != CRYP_AES_GCM_GMAC) |
---|
2638 | { |
---|
2639 | /* Enable CRYP (not allowed in GCM & CCM)*/ |
---|
2640 | __HAL_CRYP_ENABLE(hcryp); |
---|
2641 | } |
---|
2642 | |
---|
2643 | /* Enable the DMA input stream */ |
---|
2644 | if (HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DINR, Size) != HAL_OK) |
---|
2645 | { |
---|
2646 | /* DMA error code field */ |
---|
2647 | hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA; |
---|
2648 | |
---|
2649 | /* Call error callback */ |
---|
2650 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
---|
2651 | /*Call registered error callback*/ |
---|
2652 | hcryp->ErrorCallback(hcryp); |
---|
2653 | #else |
---|
2654 | /*Call legacy weak error callback*/ |
---|
2655 | HAL_CRYP_ErrorCallback(hcryp); |
---|
2656 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
---|
2657 | } |
---|
2658 | /* Enable the DMA output stream */ |
---|
2659 | if (HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUTR, outputaddr, Size) != HAL_OK) |
---|
2660 | { |
---|
2661 | /* DMA error code field */ |
---|
2662 | hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA; |
---|
2663 | |
---|
2664 | /* Call error callback */ |
---|
2665 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
---|
2666 | /*Call registered error callback*/ |
---|
2667 | hcryp->ErrorCallback(hcryp); |
---|
2668 | #else |
---|
2669 | /*Call legacy weak error callback*/ |
---|
2670 | HAL_CRYP_ErrorCallback(hcryp); |
---|
2671 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
---|
2672 | } |
---|
2673 | /* Enable In and Out DMA requests */ |
---|
2674 | SET_BIT(hcryp->Instance->CR, (AES_CR_DMAINEN | AES_CR_DMAOUTEN)); |
---|
2675 | } |
---|
2676 | |
---|
2677 | /** |
---|
2678 | * @brief Process Data: Write Input data in polling mode and used in AES functions. |
---|
2679 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
2680 | * the configuration information for CRYP module |
---|
2681 | * @param Timeout Specify Timeout value |
---|
2682 | * @retval None |
---|
2683 | */ |
---|
2684 | static void CRYP_AES_ProcessData(CRYP_HandleTypeDef *hcryp, uint32_t Timeout) |
---|
2685 | { |
---|
2686 | |
---|
2687 | uint32_t temp; /* Temporary CrypOutBuff */ |
---|
2688 | |
---|
2689 | /* Write the input block in the IN FIFO */ |
---|
2690 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
2691 | hcryp->CrypInCount++; |
---|
2692 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
2693 | hcryp->CrypInCount++; |
---|
2694 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
2695 | hcryp->CrypInCount++; |
---|
2696 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
2697 | hcryp->CrypInCount++; |
---|
2698 | |
---|
2699 | /* Wait for CCF flag to be raised */ |
---|
2700 | if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK) |
---|
2701 | { |
---|
2702 | /* Disable the CRYP peripheral clock */ |
---|
2703 | __HAL_CRYP_DISABLE(hcryp); |
---|
2704 | |
---|
2705 | /* Change state */ |
---|
2706 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
---|
2707 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
2708 | |
---|
2709 | /* Process unlocked */ |
---|
2710 | __HAL_UNLOCK(hcryp); |
---|
2711 | /*Call registered error callback*/ |
---|
2712 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
---|
2713 | hcryp->ErrorCallback(hcryp); |
---|
2714 | #else |
---|
2715 | /*Call legacy weak error callback*/ |
---|
2716 | HAL_CRYP_ErrorCallback(hcryp); |
---|
2717 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
---|
2718 | } |
---|
2719 | |
---|
2720 | /* Clear CCF Flag */ |
---|
2721 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
---|
2722 | |
---|
2723 | /* Read the output block from the output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer*/ |
---|
2724 | temp = hcryp->Instance->DOUTR; |
---|
2725 | *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp; |
---|
2726 | hcryp->CrypOutCount++; |
---|
2727 | temp = hcryp->Instance->DOUTR; |
---|
2728 | *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp; |
---|
2729 | hcryp->CrypOutCount++; |
---|
2730 | temp = hcryp->Instance->DOUTR; |
---|
2731 | *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp; |
---|
2732 | hcryp->CrypOutCount++; |
---|
2733 | temp = hcryp->Instance->DOUTR; |
---|
2734 | *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp; |
---|
2735 | hcryp->CrypOutCount++; |
---|
2736 | |
---|
2737 | } |
---|
2738 | |
---|
2739 | /** |
---|
2740 | * @brief Handle CRYP block input/output data handling under interruption. |
---|
2741 | * @note The function is called under interruption only, once |
---|
2742 | * interruptions have been enabled by HAL_CRYP_Encrypt_IT or HAL_CRYP_Decrypt_IT. |
---|
2743 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
2744 | * the configuration information for CRYP module. |
---|
2745 | * @retval HAL status |
---|
2746 | */ |
---|
2747 | static void CRYP_AES_IT(CRYP_HandleTypeDef *hcryp) |
---|
2748 | { |
---|
2749 | uint32_t temp; /* Temporary CrypOutBuff */ |
---|
2750 | |
---|
2751 | if (hcryp->State == HAL_CRYP_STATE_BUSY) |
---|
2752 | { |
---|
2753 | /* Read the output block from the output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer*/ |
---|
2754 | temp = hcryp->Instance->DOUTR; |
---|
2755 | *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp; |
---|
2756 | hcryp->CrypOutCount++; |
---|
2757 | temp = hcryp->Instance->DOUTR; |
---|
2758 | *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp; |
---|
2759 | hcryp->CrypOutCount++; |
---|
2760 | temp = hcryp->Instance->DOUTR; |
---|
2761 | *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp; |
---|
2762 | hcryp->CrypOutCount++; |
---|
2763 | temp = hcryp->Instance->DOUTR; |
---|
2764 | *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp; |
---|
2765 | hcryp->CrypOutCount++; |
---|
2766 | |
---|
2767 | if (hcryp->CrypOutCount == (hcryp->Size / 4U)) |
---|
2768 | { |
---|
2769 | /* Disable Computation Complete flag and errors interrupts */ |
---|
2770 | __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); |
---|
2771 | |
---|
2772 | /* Change the CRYP state */ |
---|
2773 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
2774 | |
---|
2775 | /* Disable CRYP */ |
---|
2776 | __HAL_CRYP_DISABLE(hcryp); |
---|
2777 | |
---|
2778 | /* Process Unlocked */ |
---|
2779 | __HAL_UNLOCK(hcryp); |
---|
2780 | |
---|
2781 | /* Call Output transfer complete callback */ |
---|
2782 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
---|
2783 | /*Call registered Output complete callback*/ |
---|
2784 | hcryp->OutCpltCallback(hcryp); |
---|
2785 | #else |
---|
2786 | /*Call legacy weak Output complete callback*/ |
---|
2787 | HAL_CRYP_OutCpltCallback(hcryp); |
---|
2788 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
---|
2789 | } |
---|
2790 | else |
---|
2791 | { |
---|
2792 | #if (USE_HAL_CRYP_SUSPEND_RESUME == 1U) |
---|
2793 | /* If suspension flag has been raised, suspend processing |
---|
2794 | only if not already at the end of the payload */ |
---|
2795 | if (hcryp->SuspendRequest == HAL_CRYP_SUSPEND) |
---|
2796 | { |
---|
2797 | /* Clear CCF Flag */ |
---|
2798 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
---|
2799 | |
---|
2800 | /* reset SuspendRequest */ |
---|
2801 | hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE; |
---|
2802 | /* Disable Computation Complete Flag and Errors Interrupts */ |
---|
2803 | __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE|CRYP_IT_ERRIE); |
---|
2804 | /* Change the CRYP state */ |
---|
2805 | hcryp->State = HAL_CRYP_STATE_SUSPENDED; |
---|
2806 | /* Mark that the payload phase is suspended */ |
---|
2807 | hcryp->Phase = CRYP_PHASE_PAYLOAD_SUSPENDED; |
---|
2808 | |
---|
2809 | /* Process Unlocked */ |
---|
2810 | __HAL_UNLOCK(hcryp); |
---|
2811 | } |
---|
2812 | else |
---|
2813 | #endif /* USE_HAL_CRYP_SUSPEND_RESUME */ |
---|
2814 | { |
---|
2815 | /* Write the input block in the IN FIFO */ |
---|
2816 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
2817 | hcryp->CrypInCount++; |
---|
2818 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
2819 | hcryp->CrypInCount++; |
---|
2820 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
2821 | hcryp->CrypInCount++; |
---|
2822 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
2823 | hcryp->CrypInCount++; |
---|
2824 | |
---|
2825 | if (hcryp->CrypInCount == (hcryp->Size / 4U)) |
---|
2826 | { |
---|
2827 | /* Call Input transfer complete callback */ |
---|
2828 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
---|
2829 | /*Call registered Input complete callback*/ |
---|
2830 | hcryp->InCpltCallback(hcryp); |
---|
2831 | #else |
---|
2832 | /*Call legacy weak Input complete callback*/ |
---|
2833 | HAL_CRYP_InCpltCallback(hcryp); |
---|
2834 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
---|
2835 | } |
---|
2836 | } |
---|
2837 | } |
---|
2838 | } |
---|
2839 | else |
---|
2840 | { |
---|
2841 | /* Busy error code field */ |
---|
2842 | hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY; |
---|
2843 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
---|
2844 | /*Call registered error callback*/ |
---|
2845 | hcryp->ErrorCallback(hcryp); |
---|
2846 | #else |
---|
2847 | /*Call legacy weak error callback*/ |
---|
2848 | HAL_CRYP_ErrorCallback(hcryp); |
---|
2849 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
---|
2850 | } |
---|
2851 | } |
---|
2852 | |
---|
2853 | /** |
---|
2854 | * @brief Writes Key in Key registers. |
---|
2855 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
2856 | * the configuration information for CRYP module |
---|
2857 | * @param KeySize Size of Key |
---|
2858 | * @note If pKey is NULL, the Key registers are not written. This configuration |
---|
2859 | * occurs when the key is written out of HAL scope. |
---|
2860 | * @retval None |
---|
2861 | */ |
---|
2862 | static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint32_t KeySize) |
---|
2863 | { |
---|
2864 | if (hcryp->Init.pKey != NULL) |
---|
2865 | { |
---|
2866 | switch (KeySize) |
---|
2867 | { |
---|
2868 | case CRYP_KEYSIZE_256B: |
---|
2869 | hcryp->Instance->KEYR7 = *(uint32_t *)(hcryp->Init.pKey); |
---|
2870 | hcryp->Instance->KEYR6 = *(uint32_t *)(hcryp->Init.pKey + 1U); |
---|
2871 | hcryp->Instance->KEYR5 = *(uint32_t *)(hcryp->Init.pKey + 2U); |
---|
2872 | hcryp->Instance->KEYR4 = *(uint32_t *)(hcryp->Init.pKey + 3U); |
---|
2873 | hcryp->Instance->KEYR3 = *(uint32_t *)(hcryp->Init.pKey + 4U); |
---|
2874 | hcryp->Instance->KEYR2 = *(uint32_t *)(hcryp->Init.pKey + 5U); |
---|
2875 | hcryp->Instance->KEYR1 = *(uint32_t *)(hcryp->Init.pKey + 6U); |
---|
2876 | hcryp->Instance->KEYR0 = *(uint32_t *)(hcryp->Init.pKey + 7U); |
---|
2877 | break; |
---|
2878 | case CRYP_KEYSIZE_128B: |
---|
2879 | hcryp->Instance->KEYR3 = *(uint32_t *)(hcryp->Init.pKey); |
---|
2880 | hcryp->Instance->KEYR2 = *(uint32_t *)(hcryp->Init.pKey + 1U); |
---|
2881 | hcryp->Instance->KEYR1 = *(uint32_t *)(hcryp->Init.pKey + 2U); |
---|
2882 | hcryp->Instance->KEYR0 = *(uint32_t *)(hcryp->Init.pKey + 3U); |
---|
2883 | |
---|
2884 | break; |
---|
2885 | default: |
---|
2886 | break; |
---|
2887 | } |
---|
2888 | } |
---|
2889 | } |
---|
2890 | |
---|
2891 | /** |
---|
2892 | * @brief Encryption/Decryption process in AES GCM mode and prepare the authentication TAG |
---|
2893 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
2894 | * the configuration information for CRYP module |
---|
2895 | * @param Timeout Timeout duration |
---|
2896 | * @retval HAL status |
---|
2897 | */ |
---|
2898 | static HAL_StatusTypeDef CRYP_AESGCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout) |
---|
2899 | { |
---|
2900 | uint32_t tickstart; |
---|
2901 | uint32_t wordsize = ((uint32_t)hcryp->Size / 4U) ; |
---|
2902 | uint32_t npblb; |
---|
2903 | uint32_t temp; /* Temporary CrypOutBuff */ |
---|
2904 | uint32_t index; |
---|
2905 | uint32_t lastwordsize; |
---|
2906 | uint32_t incount; /* Temporary CrypInCount Value */ |
---|
2907 | uint32_t outcount; /* Temporary CrypOutCount Value */ |
---|
2908 | uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ |
---|
2909 | |
---|
2910 | if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) |
---|
2911 | { |
---|
2912 | if (hcryp->KeyIVConfig == 1U) |
---|
2913 | { |
---|
2914 | /* If the Key and IV configuration has to be done only once |
---|
2915 | and if it has already been done, skip it */ |
---|
2916 | DoKeyIVConfig = 0U; |
---|
2917 | hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */ |
---|
2918 | } |
---|
2919 | else |
---|
2920 | { |
---|
2921 | /* If the Key and IV configuration has to be done only once |
---|
2922 | and if it has not been done already, do it and set KeyIVConfig |
---|
2923 | to keep track it won't have to be done again next time */ |
---|
2924 | hcryp->KeyIVConfig = 1U; |
---|
2925 | hcryp->SizesSum = hcryp->Size; /* Merely store payload length */ |
---|
2926 | } |
---|
2927 | } |
---|
2928 | else |
---|
2929 | { |
---|
2930 | hcryp->SizesSum = hcryp->Size; |
---|
2931 | } |
---|
2932 | |
---|
2933 | if (DoKeyIVConfig == 1U) |
---|
2934 | { |
---|
2935 | |
---|
2936 | /* Reset CrypHeaderCount */ |
---|
2937 | hcryp->CrypHeaderCount = 0U; |
---|
2938 | |
---|
2939 | /****************************** Init phase **********************************/ |
---|
2940 | |
---|
2941 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT); |
---|
2942 | |
---|
2943 | /* Set the key */ |
---|
2944 | CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
---|
2945 | |
---|
2946 | /* Set the initialization vector and the counter : Initial Counter Block (ICB)*/ |
---|
2947 | hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect); |
---|
2948 | hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U); |
---|
2949 | hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U); |
---|
2950 | hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U); |
---|
2951 | |
---|
2952 | /* Enable the CRYP peripheral */ |
---|
2953 | __HAL_CRYP_ENABLE(hcryp); |
---|
2954 | |
---|
2955 | /* just wait for hash computation */ |
---|
2956 | if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK) |
---|
2957 | { |
---|
2958 | /* Change state */ |
---|
2959 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
---|
2960 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
2961 | |
---|
2962 | /* Process unlocked & return error */ |
---|
2963 | __HAL_UNLOCK(hcryp); |
---|
2964 | return HAL_ERROR; |
---|
2965 | } |
---|
2966 | /* Clear CCF flag */ |
---|
2967 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
---|
2968 | |
---|
2969 | /************************ Header phase *************************************/ |
---|
2970 | |
---|
2971 | if (CRYP_GCMCCM_SetHeaderPhase(hcryp, Timeout) != HAL_OK) |
---|
2972 | { |
---|
2973 | return HAL_ERROR; |
---|
2974 | } |
---|
2975 | |
---|
2976 | /*************************Payload phase ************************************/ |
---|
2977 | |
---|
2978 | /* Set the phase */ |
---|
2979 | hcryp->Phase = CRYP_PHASE_PROCESS; |
---|
2980 | |
---|
2981 | /* Select payload phase once the header phase is performed */ |
---|
2982 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); |
---|
2983 | |
---|
2984 | /* Set to 0 the number of non-valid bytes using NPBLB register*/ |
---|
2985 | MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U); |
---|
2986 | |
---|
2987 | } /* if (DoKeyIVConfig == 1U) */ |
---|
2988 | |
---|
2989 | if ((hcryp->Size % 16U) != 0U) |
---|
2990 | { |
---|
2991 | /* recalculate wordsize */ |
---|
2992 | wordsize = ((wordsize / 4U) * 4U) ; |
---|
2993 | } |
---|
2994 | |
---|
2995 | /* Get tick */ |
---|
2996 | tickstart = HAL_GetTick(); |
---|
2997 | |
---|
2998 | /* Write input data and get output Data */ |
---|
2999 | incount = hcryp->CrypInCount; |
---|
3000 | outcount = hcryp->CrypOutCount; |
---|
3001 | while ((incount < wordsize) && (outcount < wordsize)) |
---|
3002 | { |
---|
3003 | /* Write plain data and get cipher data */ |
---|
3004 | CRYP_AES_ProcessData(hcryp, Timeout); |
---|
3005 | |
---|
3006 | /* Check for the Timeout */ |
---|
3007 | if (Timeout != HAL_MAX_DELAY) |
---|
3008 | { |
---|
3009 | if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) |
---|
3010 | { |
---|
3011 | /* Disable the CRYP peripheral clock */ |
---|
3012 | __HAL_CRYP_DISABLE(hcryp); |
---|
3013 | |
---|
3014 | /* Change state & error code */ |
---|
3015 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
---|
3016 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
3017 | |
---|
3018 | /* Process unlocked */ |
---|
3019 | __HAL_UNLOCK(hcryp); |
---|
3020 | return HAL_ERROR; |
---|
3021 | } |
---|
3022 | } |
---|
3023 | incount = hcryp->CrypInCount; |
---|
3024 | outcount = hcryp->CrypOutCount; |
---|
3025 | } |
---|
3026 | |
---|
3027 | if ((hcryp->Size % 16U) != 0U) |
---|
3028 | { |
---|
3029 | /* Compute the number of padding bytes in last block of payload */ |
---|
3030 | npblb = ((((uint32_t)hcryp->Size / 16U) + 1U) * 16U) - ((uint32_t)hcryp->Size); |
---|
3031 | |
---|
3032 | /* Set Npblb in case of AES GCM payload encryption to get right tag*/ |
---|
3033 | if ((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT) |
---|
3034 | { |
---|
3035 | /* Set to 0 the number of non-valid bytes using NPBLB register*/ |
---|
3036 | MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U); |
---|
3037 | } |
---|
3038 | /* Number of valid words (lastwordsize) in last block */ |
---|
3039 | if ((npblb % 4U) == 0U) |
---|
3040 | { |
---|
3041 | lastwordsize = (16U - npblb) / 4U; |
---|
3042 | } |
---|
3043 | else |
---|
3044 | { |
---|
3045 | lastwordsize = ((16U - npblb) / 4U) + 1U; |
---|
3046 | } |
---|
3047 | /* last block optionally pad the data with zeros*/ |
---|
3048 | for (index = 0U; index < lastwordsize; index ++) |
---|
3049 | { |
---|
3050 | /* Write the last Input block in the IN FIFO */ |
---|
3051 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
3052 | hcryp->CrypInCount++; |
---|
3053 | } |
---|
3054 | while (index < 4U) |
---|
3055 | { |
---|
3056 | /* pad the data with zeros to have a complete block */ |
---|
3057 | hcryp->Instance->DINR = 0U; |
---|
3058 | index++; |
---|
3059 | } |
---|
3060 | /* Wait for CCF flag to be raised */ |
---|
3061 | if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK) |
---|
3062 | { |
---|
3063 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
3064 | __HAL_UNLOCK(hcryp); |
---|
3065 | |
---|
3066 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
---|
3067 | /*Call registered error callback*/ |
---|
3068 | hcryp->ErrorCallback(hcryp); |
---|
3069 | #else |
---|
3070 | /*Call legacy weak error callback*/ |
---|
3071 | HAL_CRYP_ErrorCallback(hcryp); |
---|
3072 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
---|
3073 | } |
---|
3074 | |
---|
3075 | /* Clear CCF Flag */ |
---|
3076 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
---|
3077 | |
---|
3078 | /*Read the output block from the output FIFO */ |
---|
3079 | for (index = 0U; index < 4U; index++) |
---|
3080 | { |
---|
3081 | /* Read the output block from the output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer */ |
---|
3082 | temp = hcryp->Instance->DOUTR; |
---|
3083 | |
---|
3084 | *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp; |
---|
3085 | hcryp->CrypOutCount++; |
---|
3086 | } |
---|
3087 | } |
---|
3088 | |
---|
3089 | /* Return function status */ |
---|
3090 | return HAL_OK; |
---|
3091 | } |
---|
3092 | |
---|
3093 | /** |
---|
3094 | * @brief Encryption/Decryption process in AES GCM mode and prepare the authentication TAG in interrupt mode |
---|
3095 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
3096 | * the configuration information for CRYP module |
---|
3097 | * @retval HAL status |
---|
3098 | */ |
---|
3099 | static HAL_StatusTypeDef CRYP_AESGCM_Process_IT(CRYP_HandleTypeDef *hcryp) |
---|
3100 | { |
---|
3101 | __IO uint32_t count = 0U; |
---|
3102 | uint32_t loopcounter; |
---|
3103 | uint32_t lastwordsize; |
---|
3104 | uint32_t npblb; |
---|
3105 | uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ |
---|
3106 | |
---|
3107 | #if (USE_HAL_CRYP_SUSPEND_RESUME == 1U) |
---|
3108 | if ((hcryp->Phase == CRYP_PHASE_HEADER_SUSPENDED) || (hcryp->Phase == CRYP_PHASE_PAYLOAD_SUSPENDED)) |
---|
3109 | { |
---|
3110 | CRYP_PhaseProcessingResume(hcryp); |
---|
3111 | return HAL_OK; |
---|
3112 | } |
---|
3113 | #endif /* USE_HAL_CRYP_SUSPEND_RESUME */ |
---|
3114 | |
---|
3115 | if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) |
---|
3116 | { |
---|
3117 | if (hcryp->KeyIVConfig == 1U) |
---|
3118 | { |
---|
3119 | /* If the Key and IV configuration has to be done only once |
---|
3120 | and if it has already been done, skip it */ |
---|
3121 | DoKeyIVConfig = 0U; |
---|
3122 | hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */ |
---|
3123 | } |
---|
3124 | else |
---|
3125 | { |
---|
3126 | /* If the Key and IV configuration has to be done only once |
---|
3127 | and if it has not been done already, do it and set KeyIVConfig |
---|
3128 | to keep track it won't have to be done again next time */ |
---|
3129 | hcryp->KeyIVConfig = 1U; |
---|
3130 | hcryp->SizesSum = hcryp->Size; /* Merely store payload length */ |
---|
3131 | } |
---|
3132 | } |
---|
3133 | else |
---|
3134 | { |
---|
3135 | hcryp->SizesSum = hcryp->Size; |
---|
3136 | } |
---|
3137 | |
---|
3138 | /* Configure Key, IV and process message (header and payload) */ |
---|
3139 | if (DoKeyIVConfig == 1U) |
---|
3140 | { |
---|
3141 | /* Reset CrypHeaderCount */ |
---|
3142 | hcryp->CrypHeaderCount = 0U; |
---|
3143 | |
---|
3144 | /******************************* Init phase *********************************/ |
---|
3145 | |
---|
3146 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT); |
---|
3147 | |
---|
3148 | /* Set the key */ |
---|
3149 | CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
---|
3150 | |
---|
3151 | /* Set the initialization vector and the counter : Initial Counter Block (ICB)*/ |
---|
3152 | hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect); |
---|
3153 | hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U); |
---|
3154 | hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U); |
---|
3155 | hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U); |
---|
3156 | |
---|
3157 | /* Enable the CRYP peripheral */ |
---|
3158 | __HAL_CRYP_ENABLE(hcryp); |
---|
3159 | |
---|
3160 | /* just wait for hash computation */ |
---|
3161 | count = CRYP_TIMEOUT_GCMCCMINITPHASE; |
---|
3162 | do |
---|
3163 | { |
---|
3164 | count-- ; |
---|
3165 | if (count == 0U) |
---|
3166 | { |
---|
3167 | /* Disable the CRYP peripheral clock */ |
---|
3168 | __HAL_CRYP_DISABLE(hcryp); |
---|
3169 | |
---|
3170 | /* Change state */ |
---|
3171 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
---|
3172 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
3173 | |
---|
3174 | /* Process unlocked */ |
---|
3175 | __HAL_UNLOCK(hcryp); |
---|
3176 | return HAL_ERROR; |
---|
3177 | } |
---|
3178 | } |
---|
3179 | while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)); |
---|
3180 | |
---|
3181 | /* Clear CCF flag */ |
---|
3182 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
---|
3183 | |
---|
3184 | /***************************** Header phase *********************************/ |
---|
3185 | |
---|
3186 | /* Select header phase */ |
---|
3187 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER); |
---|
3188 | |
---|
3189 | /* Enable computation complete flag and error interrupts */ |
---|
3190 | __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); |
---|
3191 | |
---|
3192 | /* Enable the CRYP peripheral */ |
---|
3193 | __HAL_CRYP_ENABLE(hcryp); |
---|
3194 | |
---|
3195 | if (hcryp->Init.HeaderSize == 0U) /*header phase is skipped*/ |
---|
3196 | { |
---|
3197 | /* Set the phase */ |
---|
3198 | hcryp->Phase = CRYP_PHASE_PROCESS; |
---|
3199 | |
---|
3200 | /* Select payload phase once the header phase is performed */ |
---|
3201 | MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_PAYLOAD); |
---|
3202 | |
---|
3203 | /* Set to 0 the number of non-valid bytes using NPBLB register*/ |
---|
3204 | MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U); |
---|
3205 | |
---|
3206 | /* Write the payload Input block in the IN FIFO */ |
---|
3207 | if (hcryp->Size == 0U) |
---|
3208 | { |
---|
3209 | /* Disable interrupts */ |
---|
3210 | __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); |
---|
3211 | |
---|
3212 | /* Change the CRYP state */ |
---|
3213 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
3214 | |
---|
3215 | /* Process unlocked */ |
---|
3216 | __HAL_UNLOCK(hcryp); |
---|
3217 | } |
---|
3218 | else if (hcryp->Size >= 16U) |
---|
3219 | { |
---|
3220 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
3221 | hcryp->CrypInCount++; |
---|
3222 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
3223 | hcryp->CrypInCount++; |
---|
3224 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
3225 | hcryp->CrypInCount++; |
---|
3226 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
3227 | hcryp->CrypInCount++; |
---|
3228 | if (hcryp->CrypInCount == (hcryp->Size / 4U)) |
---|
3229 | { |
---|
3230 | /* Call Input transfer complete callback */ |
---|
3231 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
---|
3232 | /*Call registered Input complete callback*/ |
---|
3233 | hcryp->InCpltCallback(hcryp); |
---|
3234 | #else |
---|
3235 | /*Call legacy weak Input complete callback*/ |
---|
3236 | HAL_CRYP_InCpltCallback(hcryp); |
---|
3237 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
---|
3238 | } |
---|
3239 | } |
---|
3240 | else /* Size < 16Bytes : first block is the last block*/ |
---|
3241 | { |
---|
3242 | /* Workaround not implemented for TinyAES2*/ |
---|
3243 | /* Size should be %4 otherwise Tag will be incorrectly generated for GCM Encryption: |
---|
3244 | Workaround is implemented in polling mode, so if last block of |
---|
3245 | payload <128bit do not use CRYP_Encrypt_IT otherwise TAG is incorrectly generated for GCM Encryption. */ |
---|
3246 | |
---|
3247 | |
---|
3248 | /* Compute the number of padding bytes in last block of payload */ |
---|
3249 | npblb = 16U - ((uint32_t)hcryp->Size); |
---|
3250 | |
---|
3251 | if ((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT) |
---|
3252 | { |
---|
3253 | /* Set to 0 the number of non-valid bytes using NPBLB register*/ |
---|
3254 | MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U); |
---|
3255 | } |
---|
3256 | |
---|
3257 | /* Number of valid words (lastwordsize) in last block */ |
---|
3258 | if ((npblb % 4U) == 0U) |
---|
3259 | { |
---|
3260 | lastwordsize = (16U - npblb) / 4U; |
---|
3261 | } |
---|
3262 | else |
---|
3263 | { |
---|
3264 | lastwordsize = ((16U - npblb) / 4U) + 1U; |
---|
3265 | } |
---|
3266 | |
---|
3267 | /* last block optionally pad the data with zeros*/ |
---|
3268 | for (loopcounter = 0U; loopcounter < lastwordsize ; loopcounter++) |
---|
3269 | { |
---|
3270 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
3271 | hcryp->CrypInCount++; |
---|
3272 | } |
---|
3273 | while (loopcounter < 4U) |
---|
3274 | { |
---|
3275 | /* pad the data with zeros to have a complete block */ |
---|
3276 | hcryp->Instance->DINR = 0x0U; |
---|
3277 | loopcounter++; |
---|
3278 | } |
---|
3279 | } |
---|
3280 | } |
---|
3281 | else if ((hcryp->Init.HeaderSize) < 4U) |
---|
3282 | { |
---|
3283 | for (loopcounter = 0U; loopcounter < hcryp->Init.HeaderSize ; loopcounter++) |
---|
3284 | { |
---|
3285 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
3286 | hcryp->CrypHeaderCount++ ; |
---|
3287 | } |
---|
3288 | while (loopcounter < 4U) |
---|
3289 | { |
---|
3290 | /* pad the data with zeros to have a complete block */ |
---|
3291 | hcryp->Instance->DINR = 0x0U; |
---|
3292 | loopcounter++; |
---|
3293 | } |
---|
3294 | /* Set the phase */ |
---|
3295 | hcryp->Phase = CRYP_PHASE_PROCESS; |
---|
3296 | |
---|
3297 | /* Select payload phase once the header phase is performed */ |
---|
3298 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); |
---|
3299 | |
---|
3300 | /* Set to 0 the number of non-valid bytes using NPBLB register*/ |
---|
3301 | MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U); |
---|
3302 | |
---|
3303 | /* Call Input transfer complete callback */ |
---|
3304 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
---|
3305 | /*Call registered Input complete callback*/ |
---|
3306 | hcryp->InCpltCallback(hcryp); |
---|
3307 | #else |
---|
3308 | /*Call legacy weak Input complete callback*/ |
---|
3309 | HAL_CRYP_InCpltCallback(hcryp); |
---|
3310 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
---|
3311 | } |
---|
3312 | else |
---|
3313 | { |
---|
3314 | /* Write the input block in the IN FIFO */ |
---|
3315 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
3316 | hcryp->CrypHeaderCount++; |
---|
3317 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
3318 | hcryp->CrypHeaderCount++; |
---|
3319 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
3320 | hcryp->CrypHeaderCount++; |
---|
3321 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
3322 | hcryp->CrypHeaderCount++; |
---|
3323 | } |
---|
3324 | |
---|
3325 | } /* end of if (DoKeyIVConfig == 1U) */ |
---|
3326 | else /* Key and IV have already been configured, |
---|
3327 | header has already been processed; |
---|
3328 | only process here message payload */ |
---|
3329 | { |
---|
3330 | |
---|
3331 | /* Enable computation complete flag and error interrupts */ |
---|
3332 | __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); |
---|
3333 | |
---|
3334 | /* Set to 0 the number of non-valid bytes using NPBLB register*/ |
---|
3335 | MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U); |
---|
3336 | |
---|
3337 | /* Write the payload Input block in the IN FIFO */ |
---|
3338 | if (hcryp->Size == 0U) |
---|
3339 | { |
---|
3340 | /* Disable interrupts */ |
---|
3341 | __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); |
---|
3342 | |
---|
3343 | /* Change the CRYP state */ |
---|
3344 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
3345 | |
---|
3346 | /* Process unlocked */ |
---|
3347 | __HAL_UNLOCK(hcryp); |
---|
3348 | } |
---|
3349 | else if (hcryp->Size >= 16U) |
---|
3350 | { |
---|
3351 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
3352 | hcryp->CrypInCount++; |
---|
3353 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
3354 | hcryp->CrypInCount++; |
---|
3355 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
3356 | hcryp->CrypInCount++; |
---|
3357 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
3358 | hcryp->CrypInCount++; |
---|
3359 | if (hcryp->CrypInCount == (hcryp->Size / 4U)) |
---|
3360 | { |
---|
3361 | /* Call Input transfer complete callback */ |
---|
3362 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
---|
3363 | /*Call registered Input complete callback*/ |
---|
3364 | hcryp->InCpltCallback(hcryp); |
---|
3365 | #else |
---|
3366 | /*Call legacy weak Input complete callback*/ |
---|
3367 | HAL_CRYP_InCpltCallback(hcryp); |
---|
3368 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
---|
3369 | } |
---|
3370 | } |
---|
3371 | else /* Size < 16Bytes : first block is the last block*/ |
---|
3372 | { |
---|
3373 | /* Workaround not implemented for TinyAES2*/ |
---|
3374 | /* Size should be %4 otherwise Tag will be incorrectly generated for GCM Encryption: |
---|
3375 | Workaround is implemented in polling mode, so if last block of |
---|
3376 | payload <128bit do not use CRYP_Encrypt_IT otherwise TAG is incorrectly generated for GCM Encryption. */ |
---|
3377 | |
---|
3378 | |
---|
3379 | /* Compute the number of padding bytes in last block of payload */ |
---|
3380 | npblb = 16U - ((uint32_t)hcryp->Size); |
---|
3381 | |
---|
3382 | if ((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT) |
---|
3383 | { |
---|
3384 | /* Set to 0 the number of non-valid bytes using NPBLB register*/ |
---|
3385 | MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U); |
---|
3386 | } |
---|
3387 | |
---|
3388 | /* Number of valid words (lastwordsize) in last block */ |
---|
3389 | if ((npblb % 4U) == 0U) |
---|
3390 | { |
---|
3391 | lastwordsize = (16U - npblb) / 4U; |
---|
3392 | } |
---|
3393 | else |
---|
3394 | { |
---|
3395 | lastwordsize = ((16U - npblb) / 4U) + 1U; |
---|
3396 | } |
---|
3397 | |
---|
3398 | /* last block optionally pad the data with zeros*/ |
---|
3399 | for (loopcounter = 0U; loopcounter < lastwordsize ; loopcounter++) |
---|
3400 | { |
---|
3401 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
3402 | hcryp->CrypInCount++; |
---|
3403 | } |
---|
3404 | while (loopcounter < 4U) |
---|
3405 | { |
---|
3406 | /* pad the data with zeros to have a complete block */ |
---|
3407 | hcryp->Instance->DINR = 0x0U; |
---|
3408 | loopcounter++; |
---|
3409 | } |
---|
3410 | } |
---|
3411 | } |
---|
3412 | |
---|
3413 | /* Return function status */ |
---|
3414 | return HAL_OK; |
---|
3415 | } |
---|
3416 | |
---|
3417 | |
---|
3418 | /** |
---|
3419 | * @brief Encryption/Decryption process in AES GCM mode and prepare the authentication TAG using DMA |
---|
3420 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
3421 | * the configuration information for CRYP module |
---|
3422 | * @retval HAL status |
---|
3423 | */ |
---|
3424 | static HAL_StatusTypeDef CRYP_AESGCM_Process_DMA(CRYP_HandleTypeDef *hcryp) |
---|
3425 | { |
---|
3426 | __IO uint32_t count; |
---|
3427 | uint16_t wordsize = hcryp->Size / 4U ; |
---|
3428 | uint32_t index; |
---|
3429 | uint32_t npblb; |
---|
3430 | uint32_t lastwordsize; |
---|
3431 | uint32_t temp; /* Temporary CrypOutBuff */ |
---|
3432 | uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ |
---|
3433 | |
---|
3434 | if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) |
---|
3435 | { |
---|
3436 | if (hcryp->KeyIVConfig == 1U) |
---|
3437 | { |
---|
3438 | /* If the Key and IV configuration has to be done only once |
---|
3439 | and if it has already been done, skip it */ |
---|
3440 | DoKeyIVConfig = 0U; |
---|
3441 | hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */ |
---|
3442 | } |
---|
3443 | else |
---|
3444 | { |
---|
3445 | /* If the Key and IV configuration has to be done only once |
---|
3446 | and if it has not been done already, do it and set KeyIVConfig |
---|
3447 | to keep track it won't have to be done again next time */ |
---|
3448 | hcryp->KeyIVConfig = 1U; |
---|
3449 | hcryp->SizesSum = hcryp->Size; /* Merely store payload length */ |
---|
3450 | } |
---|
3451 | } |
---|
3452 | else |
---|
3453 | { |
---|
3454 | hcryp->SizesSum = hcryp->Size; |
---|
3455 | } |
---|
3456 | |
---|
3457 | if (DoKeyIVConfig == 1U) |
---|
3458 | { |
---|
3459 | |
---|
3460 | /* Reset CrypHeaderCount */ |
---|
3461 | hcryp->CrypHeaderCount = 0U; |
---|
3462 | |
---|
3463 | /*************************** Init phase ************************************/ |
---|
3464 | |
---|
3465 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT); |
---|
3466 | |
---|
3467 | /* Set the key */ |
---|
3468 | CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
---|
3469 | |
---|
3470 | /* Set the initialization vector and the counter : Initial Counter Block (ICB)*/ |
---|
3471 | hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect); |
---|
3472 | hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U); |
---|
3473 | hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U); |
---|
3474 | hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U); |
---|
3475 | |
---|
3476 | /* Enable the CRYP peripheral */ |
---|
3477 | __HAL_CRYP_ENABLE(hcryp); |
---|
3478 | |
---|
3479 | /* just wait for hash computation */ |
---|
3480 | count = CRYP_TIMEOUT_GCMCCMINITPHASE; |
---|
3481 | do |
---|
3482 | { |
---|
3483 | count-- ; |
---|
3484 | if (count == 0U) |
---|
3485 | { |
---|
3486 | /* Disable the CRYP peripheral clock */ |
---|
3487 | __HAL_CRYP_DISABLE(hcryp); |
---|
3488 | |
---|
3489 | /* Change state */ |
---|
3490 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
---|
3491 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
3492 | |
---|
3493 | /* Process unlocked */ |
---|
3494 | __HAL_UNLOCK(hcryp); |
---|
3495 | return HAL_ERROR; |
---|
3496 | } |
---|
3497 | } |
---|
3498 | while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)); |
---|
3499 | |
---|
3500 | /* Clear CCF flag */ |
---|
3501 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
---|
3502 | |
---|
3503 | /************************ Header phase *************************************/ |
---|
3504 | |
---|
3505 | if (CRYP_GCMCCM_SetHeaderPhase_DMA(hcryp) != HAL_OK) |
---|
3506 | { |
---|
3507 | return HAL_ERROR; |
---|
3508 | } |
---|
3509 | |
---|
3510 | /************************ Payload phase ************************************/ |
---|
3511 | |
---|
3512 | /* Set the phase */ |
---|
3513 | hcryp->Phase = CRYP_PHASE_PROCESS; |
---|
3514 | |
---|
3515 | /* Set to 0 the number of non-valid bytes using NPBLB register*/ |
---|
3516 | MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U); |
---|
3517 | |
---|
3518 | /* Select payload phase once the header phase is performed */ |
---|
3519 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); |
---|
3520 | |
---|
3521 | } /* if (DoKeyIVConfig == 1U) */ |
---|
3522 | |
---|
3523 | if (hcryp->Size == 0U) |
---|
3524 | { |
---|
3525 | /* Process unLocked */ |
---|
3526 | __HAL_UNLOCK(hcryp); |
---|
3527 | |
---|
3528 | /* Change the CRYP state and phase */ |
---|
3529 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
3530 | } |
---|
3531 | else if (hcryp->Size >= 16U) |
---|
3532 | { |
---|
3533 | /*DMA transfer must not include the last block in case of Size is not %16 */ |
---|
3534 | wordsize = wordsize - (wordsize % 4U); |
---|
3535 | |
---|
3536 | /*DMA transfer */ |
---|
3537 | CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), wordsize, (uint32_t)(hcryp->pCrypOutBuffPtr)); |
---|
3538 | } |
---|
3539 | else /* length of input data is < 16 */ |
---|
3540 | { |
---|
3541 | /* Compute the number of padding bytes in last block of payload */ |
---|
3542 | npblb = 16U - (uint32_t)hcryp->Size; |
---|
3543 | |
---|
3544 | /* Set Npblb in case of AES GCM payload encryption to get right tag*/ |
---|
3545 | if ((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT) |
---|
3546 | { |
---|
3547 | /* Specify the number of non-valid bytes using NPBLB register*/ |
---|
3548 | MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U); |
---|
3549 | } |
---|
3550 | |
---|
3551 | /* Enable CRYP to start the final phase */ |
---|
3552 | __HAL_CRYP_ENABLE(hcryp); |
---|
3553 | |
---|
3554 | /* Number of valid words (lastwordsize) in last block */ |
---|
3555 | if ((npblb % 4U) == 0U) |
---|
3556 | { |
---|
3557 | lastwordsize = (16U - npblb) / 4U; |
---|
3558 | } |
---|
3559 | else |
---|
3560 | { |
---|
3561 | lastwordsize = ((16U - npblb) / 4U) + 1U; |
---|
3562 | } |
---|
3563 | |
---|
3564 | /* last block optionally pad the data with zeros*/ |
---|
3565 | for (index = 0U; index < lastwordsize; index ++) |
---|
3566 | { |
---|
3567 | /* Write the last Input block in the IN FIFO */ |
---|
3568 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
3569 | hcryp->CrypInCount++; |
---|
3570 | } |
---|
3571 | while (index < 4U) |
---|
3572 | { |
---|
3573 | /* pad the data with zeros to have a complete block */ |
---|
3574 | hcryp->Instance->DINR = 0U; |
---|
3575 | index++; |
---|
3576 | } |
---|
3577 | /* Wait for CCF flag to be raised */ |
---|
3578 | count = CRYP_TIMEOUT_GCMCCMHEADERPHASE; |
---|
3579 | do |
---|
3580 | { |
---|
3581 | count-- ; |
---|
3582 | if (count == 0U) |
---|
3583 | { |
---|
3584 | /* Disable the CRYP peripheral clock */ |
---|
3585 | __HAL_CRYP_DISABLE(hcryp); |
---|
3586 | |
---|
3587 | /* Change state */ |
---|
3588 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
---|
3589 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
3590 | |
---|
3591 | /* Process unlocked */ |
---|
3592 | __HAL_UNLOCK(hcryp); |
---|
3593 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
---|
3594 | /*Call registered error callback*/ |
---|
3595 | hcryp->ErrorCallback(hcryp); |
---|
3596 | #else |
---|
3597 | /*Call legacy weak error callback*/ |
---|
3598 | HAL_CRYP_ErrorCallback(hcryp); |
---|
3599 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
---|
3600 | } |
---|
3601 | } |
---|
3602 | while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)); |
---|
3603 | |
---|
3604 | /* Clear CCF Flag */ |
---|
3605 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
---|
3606 | |
---|
3607 | /*Read the output block from the output FIFO */ |
---|
3608 | for (index = 0U; index < 4U; index++) |
---|
3609 | { |
---|
3610 | /* Read the output block from the output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer */ |
---|
3611 | temp = hcryp->Instance->DOUTR; |
---|
3612 | |
---|
3613 | *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp; |
---|
3614 | hcryp->CrypOutCount++; |
---|
3615 | } |
---|
3616 | |
---|
3617 | /* Change the CRYP state to ready */ |
---|
3618 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
3619 | |
---|
3620 | /* Process unlocked */ |
---|
3621 | __HAL_UNLOCK(hcryp); |
---|
3622 | } |
---|
3623 | |
---|
3624 | /* Return function status */ |
---|
3625 | return HAL_OK; |
---|
3626 | } |
---|
3627 | |
---|
3628 | |
---|
3629 | /** |
---|
3630 | * @brief AES CCM encryption/decryption processing in polling mode |
---|
3631 | * for TinyAES peripheral, no encrypt/decrypt performed, only authentication preparation. |
---|
3632 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
3633 | * the configuration information for CRYP module |
---|
3634 | * @param Timeout Timeout duration |
---|
3635 | * @retval HAL status |
---|
3636 | */ |
---|
3637 | static HAL_StatusTypeDef CRYP_AESCCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout) |
---|
3638 | { |
---|
3639 | uint32_t tickstart; |
---|
3640 | uint32_t wordsize = ((uint32_t)hcryp->Size / 4U) ; |
---|
3641 | uint32_t loopcounter; |
---|
3642 | uint32_t npblb; |
---|
3643 | uint32_t lastwordsize; |
---|
3644 | uint32_t temp; /* Temporary CrypOutBuff */ |
---|
3645 | uint32_t incount; /* Temporary CrypInCount Value */ |
---|
3646 | uint32_t outcount; /* Temporary CrypOutCount Value */ |
---|
3647 | uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ |
---|
3648 | |
---|
3649 | if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) |
---|
3650 | { |
---|
3651 | if (hcryp->KeyIVConfig == 1U) |
---|
3652 | { |
---|
3653 | /* If the Key and IV configuration has to be done only once |
---|
3654 | and if it has already been done, skip it */ |
---|
3655 | DoKeyIVConfig = 0U; |
---|
3656 | hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */ |
---|
3657 | } |
---|
3658 | else |
---|
3659 | { |
---|
3660 | /* If the Key and IV configuration has to be done only once |
---|
3661 | and if it has not been done already, do it and set KeyIVConfig |
---|
3662 | to keep track it won't have to be done again next time */ |
---|
3663 | hcryp->KeyIVConfig = 1U; |
---|
3664 | hcryp->SizesSum = hcryp->Size; /* Merely store payload length */ |
---|
3665 | } |
---|
3666 | } |
---|
3667 | else |
---|
3668 | { |
---|
3669 | hcryp->SizesSum = hcryp->Size; |
---|
3670 | } |
---|
3671 | |
---|
3672 | if (DoKeyIVConfig == 1U) |
---|
3673 | { |
---|
3674 | /* Reset CrypHeaderCount */ |
---|
3675 | hcryp->CrypHeaderCount = 0U; |
---|
3676 | |
---|
3677 | /********************** Init phase ******************************************/ |
---|
3678 | |
---|
3679 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT); |
---|
3680 | |
---|
3681 | /* Set the key */ |
---|
3682 | CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
---|
3683 | |
---|
3684 | /* Set the initialization vector (IV) with B0 */ |
---|
3685 | hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.B0); |
---|
3686 | hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.B0 + 1U); |
---|
3687 | hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.B0 + 2U); |
---|
3688 | hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.B0 + 3U); |
---|
3689 | |
---|
3690 | /* Enable the CRYP peripheral */ |
---|
3691 | __HAL_CRYP_ENABLE(hcryp); |
---|
3692 | |
---|
3693 | /* just wait for hash computation */ |
---|
3694 | if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK) |
---|
3695 | { |
---|
3696 | /* Change state */ |
---|
3697 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
---|
3698 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
3699 | |
---|
3700 | /* Process unlocked & return error */ |
---|
3701 | __HAL_UNLOCK(hcryp); |
---|
3702 | return HAL_ERROR; |
---|
3703 | } |
---|
3704 | /* Clear CCF flag */ |
---|
3705 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
---|
3706 | |
---|
3707 | /************************ Header phase *************************************/ |
---|
3708 | /* Header block(B1) : associated data length expressed in bytes concatenated |
---|
3709 | with Associated Data (A)*/ |
---|
3710 | if (CRYP_GCMCCM_SetHeaderPhase(hcryp, Timeout) != HAL_OK) |
---|
3711 | { |
---|
3712 | return HAL_ERROR; |
---|
3713 | } |
---|
3714 | |
---|
3715 | /*************************Payload phase ************************************/ |
---|
3716 | |
---|
3717 | /* Set the phase */ |
---|
3718 | hcryp->Phase = CRYP_PHASE_PROCESS; |
---|
3719 | |
---|
3720 | /* Select payload phase once the header phase is performed */ |
---|
3721 | MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_PAYLOAD); |
---|
3722 | |
---|
3723 | /* Set to 0 the number of non-valid bytes using NPBLB register*/ |
---|
3724 | MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U); |
---|
3725 | |
---|
3726 | } /* if (DoKeyIVConfig == 1U) */ |
---|
3727 | |
---|
3728 | if ((hcryp->Size % 16U) != 0U) |
---|
3729 | { |
---|
3730 | /* recalculate wordsize */ |
---|
3731 | wordsize = ((wordsize / 4U) * 4U) ; |
---|
3732 | } |
---|
3733 | /* Get tick */ |
---|
3734 | tickstart = HAL_GetTick(); |
---|
3735 | |
---|
3736 | /* Write input data and get output data */ |
---|
3737 | incount = hcryp->CrypInCount; |
---|
3738 | outcount = hcryp->CrypOutCount; |
---|
3739 | while ((incount < wordsize) && (outcount < wordsize)) |
---|
3740 | { |
---|
3741 | /* Write plain data and get cipher data */ |
---|
3742 | CRYP_AES_ProcessData(hcryp, Timeout); |
---|
3743 | |
---|
3744 | /* Check for the Timeout */ |
---|
3745 | if (Timeout != HAL_MAX_DELAY) |
---|
3746 | { |
---|
3747 | if (((HAL_GetTick() - tickstart) > Timeout) ||(Timeout == 0U)) |
---|
3748 | { |
---|
3749 | /* Disable the CRYP peripheral clock */ |
---|
3750 | __HAL_CRYP_DISABLE(hcryp); |
---|
3751 | |
---|
3752 | /* Change state */ |
---|
3753 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
---|
3754 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
3755 | |
---|
3756 | /* Process unlocked */ |
---|
3757 | __HAL_UNLOCK(hcryp); |
---|
3758 | return HAL_ERROR; |
---|
3759 | } |
---|
3760 | } |
---|
3761 | incount = hcryp->CrypInCount; |
---|
3762 | outcount = hcryp->CrypOutCount; |
---|
3763 | } |
---|
3764 | |
---|
3765 | if ((hcryp->Size % 16U) != 0U) |
---|
3766 | { |
---|
3767 | /* Compute the number of padding bytes in last block of payload */ |
---|
3768 | npblb = ((((uint32_t)hcryp->Size / 16U) + 1U) * 16U) - ((uint32_t)hcryp->Size); |
---|
3769 | |
---|
3770 | if ((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_DECRYPT) |
---|
3771 | { |
---|
3772 | /* Set Npblb in case of AES CCM payload decryption to get right tag */ |
---|
3773 | MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20); |
---|
3774 | |
---|
3775 | } |
---|
3776 | /* Number of valid words (lastwordsize) in last block */ |
---|
3777 | if ((npblb % 4U) == 0U) |
---|
3778 | { |
---|
3779 | lastwordsize = (16U - npblb) / 4U; |
---|
3780 | } |
---|
3781 | else |
---|
3782 | { |
---|
3783 | lastwordsize = ((16U - npblb) / 4U) + 1U; |
---|
3784 | } |
---|
3785 | |
---|
3786 | /* Write the last input block in the IN FIFO */ |
---|
3787 | for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter ++) |
---|
3788 | { |
---|
3789 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
3790 | hcryp->CrypInCount++; |
---|
3791 | } |
---|
3792 | |
---|
3793 | /* Pad the data with zeros to have a complete block */ |
---|
3794 | while (loopcounter < 4U) |
---|
3795 | { |
---|
3796 | hcryp->Instance->DINR = 0U; |
---|
3797 | loopcounter++; |
---|
3798 | } |
---|
3799 | /* just wait for hash computation */ |
---|
3800 | if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK) |
---|
3801 | { |
---|
3802 | /* Change state */ |
---|
3803 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
---|
3804 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
3805 | |
---|
3806 | /* Process unlocked & return error */ |
---|
3807 | __HAL_UNLOCK(hcryp); |
---|
3808 | return HAL_ERROR; |
---|
3809 | } |
---|
3810 | /* Clear CCF flag */ |
---|
3811 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
---|
3812 | |
---|
3813 | for (loopcounter = 0U; loopcounter < 4U; loopcounter++) |
---|
3814 | { |
---|
3815 | /* Read the output block from the output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer */ |
---|
3816 | temp = hcryp->Instance->DOUTR; |
---|
3817 | |
---|
3818 | *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp; |
---|
3819 | hcryp->CrypOutCount++; |
---|
3820 | } |
---|
3821 | } |
---|
3822 | |
---|
3823 | /* Return function status */ |
---|
3824 | return HAL_OK; |
---|
3825 | } |
---|
3826 | |
---|
3827 | /** |
---|
3828 | * @brief AES CCM encryption/decryption process in interrupt mode |
---|
3829 | * for TinyAES peripheral, no encrypt/decrypt performed, only authentication preparation. |
---|
3830 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
3831 | * the configuration information for CRYP module |
---|
3832 | * @retval HAL status |
---|
3833 | */ |
---|
3834 | static HAL_StatusTypeDef CRYP_AESCCM_Process_IT(CRYP_HandleTypeDef *hcryp) |
---|
3835 | { |
---|
3836 | __IO uint32_t count = 0U; |
---|
3837 | uint32_t loopcounter; |
---|
3838 | uint32_t lastwordsize; |
---|
3839 | uint32_t npblb; |
---|
3840 | uint32_t mode; |
---|
3841 | uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ |
---|
3842 | |
---|
3843 | #if (USE_HAL_CRYP_SUSPEND_RESUME == 1U) |
---|
3844 | if ((hcryp->Phase == CRYP_PHASE_HEADER_SUSPENDED) || (hcryp->Phase == CRYP_PHASE_PAYLOAD_SUSPENDED)) |
---|
3845 | { |
---|
3846 | CRYP_PhaseProcessingResume(hcryp); |
---|
3847 | return HAL_OK; |
---|
3848 | } |
---|
3849 | #endif /* USE_HAL_CRYP_SUSPEND_RESUME */ |
---|
3850 | |
---|
3851 | if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) |
---|
3852 | { |
---|
3853 | if (hcryp->KeyIVConfig == 1U) |
---|
3854 | { |
---|
3855 | /* If the Key and IV configuration has to be done only once |
---|
3856 | and if it has already been done, skip it */ |
---|
3857 | DoKeyIVConfig = 0U; |
---|
3858 | hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */ |
---|
3859 | } |
---|
3860 | else |
---|
3861 | { |
---|
3862 | /* If the Key and IV configuration has to be done only once |
---|
3863 | and if it has not been done already, do it and set KeyIVConfig |
---|
3864 | to keep track it won't have to be done again next time */ |
---|
3865 | hcryp->KeyIVConfig = 1U; |
---|
3866 | hcryp->SizesSum = hcryp->Size; /* Merely store payload length */ |
---|
3867 | } |
---|
3868 | } |
---|
3869 | else |
---|
3870 | { |
---|
3871 | hcryp->SizesSum = hcryp->Size; |
---|
3872 | } |
---|
3873 | |
---|
3874 | /* Configure Key, IV and process message (header and payload) */ |
---|
3875 | if (DoKeyIVConfig == 1U) |
---|
3876 | { |
---|
3877 | /* Reset CrypHeaderCount */ |
---|
3878 | hcryp->CrypHeaderCount = 0U; |
---|
3879 | |
---|
3880 | /********************** Init phase ******************************************/ |
---|
3881 | |
---|
3882 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT); |
---|
3883 | |
---|
3884 | /* Set the key */ |
---|
3885 | CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
---|
3886 | |
---|
3887 | /* Set the initialization vector (IV) with B0 */ |
---|
3888 | hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.B0); |
---|
3889 | hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.B0 + 1U); |
---|
3890 | hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.B0 + 2U); |
---|
3891 | hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.B0 + 3U); |
---|
3892 | |
---|
3893 | /* Enable the CRYP peripheral */ |
---|
3894 | __HAL_CRYP_ENABLE(hcryp); |
---|
3895 | |
---|
3896 | /* just wait for hash computation */ |
---|
3897 | count = CRYP_TIMEOUT_GCMCCMINITPHASE; |
---|
3898 | do |
---|
3899 | { |
---|
3900 | count-- ; |
---|
3901 | if (count == 0U) |
---|
3902 | { |
---|
3903 | /* Disable the CRYP peripheral clock */ |
---|
3904 | __HAL_CRYP_DISABLE(hcryp); |
---|
3905 | |
---|
3906 | /* Change state */ |
---|
3907 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
---|
3908 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
3909 | |
---|
3910 | /* Process unlocked */ |
---|
3911 | __HAL_UNLOCK(hcryp); |
---|
3912 | return HAL_ERROR; |
---|
3913 | } |
---|
3914 | } |
---|
3915 | while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)); |
---|
3916 | |
---|
3917 | /* Clear CCF flag */ |
---|
3918 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
---|
3919 | |
---|
3920 | /***************************** Header phase *********************************/ |
---|
3921 | |
---|
3922 | /* Select header phase */ |
---|
3923 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER); |
---|
3924 | |
---|
3925 | /* Enable computation complete flag and error interrupts */ |
---|
3926 | __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); |
---|
3927 | |
---|
3928 | /* Enable the CRYP peripheral */ |
---|
3929 | __HAL_CRYP_ENABLE(hcryp); |
---|
3930 | |
---|
3931 | if (hcryp->Init.HeaderSize == 0U) /*header phase is skipped*/ |
---|
3932 | { |
---|
3933 | /* Set the phase */ |
---|
3934 | hcryp->Phase = CRYP_PHASE_PROCESS; |
---|
3935 | /* Select payload phase once the header phase is performed */ |
---|
3936 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD); |
---|
3937 | /* Set to 0 the number of non-valid bytes using NPBLB register*/ |
---|
3938 | MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U); |
---|
3939 | |
---|
3940 | if (hcryp->Init.Algorithm == CRYP_AES_CCM) |
---|
3941 | { |
---|
3942 | /* Increment CrypHeaderCount to pass in CRYP_GCMCCM_SetPayloadPhase_IT */ |
---|
3943 | hcryp->CrypHeaderCount++; |
---|
3944 | } |
---|
3945 | /* Write the payload Input block in the IN FIFO */ |
---|
3946 | if (hcryp->Size == 0U) |
---|
3947 | { |
---|
3948 | /* Disable interrupts */ |
---|
3949 | __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); |
---|
3950 | |
---|
3951 | /* Change the CRYP state */ |
---|
3952 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
3953 | |
---|
3954 | /* Process unlocked */ |
---|
3955 | __HAL_UNLOCK(hcryp); |
---|
3956 | } |
---|
3957 | else if (hcryp->Size >= 16U) |
---|
3958 | { |
---|
3959 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
3960 | hcryp->CrypInCount++; |
---|
3961 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
3962 | hcryp->CrypInCount++; |
---|
3963 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
3964 | hcryp->CrypInCount++; |
---|
3965 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
3966 | hcryp->CrypInCount++; |
---|
3967 | |
---|
3968 | if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U)) |
---|
3969 | { |
---|
3970 | /* Call Input transfer complete callback */ |
---|
3971 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
---|
3972 | /*Call registered Input complete callback*/ |
---|
3973 | hcryp->InCpltCallback(hcryp); |
---|
3974 | #else |
---|
3975 | /*Call legacy weak Input complete callback*/ |
---|
3976 | HAL_CRYP_InCpltCallback(hcryp); |
---|
3977 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
---|
3978 | } |
---|
3979 | } |
---|
3980 | else /* Size < 4 words : first block is the last block*/ |
---|
3981 | { |
---|
3982 | /* Compute the number of padding bytes in last block of payload */ |
---|
3983 | npblb = 16U - (uint32_t)hcryp->Size; |
---|
3984 | |
---|
3985 | mode = hcryp->Instance->CR & AES_CR_MODE; |
---|
3986 | if (((mode == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) || |
---|
3987 | ((mode == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM))) |
---|
3988 | { |
---|
3989 | /* Specify the number of non-valid bytes using NPBLB register*/ |
---|
3990 | MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U); |
---|
3991 | } |
---|
3992 | |
---|
3993 | /* Number of valid words (lastwordsize) in last block */ |
---|
3994 | if ((npblb % 4U) == 0U) |
---|
3995 | { |
---|
3996 | lastwordsize = (16U - npblb) / 4U; |
---|
3997 | } |
---|
3998 | else |
---|
3999 | { |
---|
4000 | lastwordsize = ((16U - npblb) / 4U) + 1U; |
---|
4001 | } |
---|
4002 | |
---|
4003 | /* Last block optionally pad the data with zeros*/ |
---|
4004 | for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++) |
---|
4005 | { |
---|
4006 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
4007 | hcryp->CrypInCount++; |
---|
4008 | } |
---|
4009 | while (loopcounter < 4U) |
---|
4010 | { |
---|
4011 | /* Pad the data with zeros to have a complete block */ |
---|
4012 | hcryp->Instance->DINR = 0x0U; |
---|
4013 | loopcounter++; |
---|
4014 | } |
---|
4015 | } |
---|
4016 | } |
---|
4017 | else if ((hcryp->Init.HeaderSize) < 4U) /*HeaderSize < 4 */ |
---|
4018 | { |
---|
4019 | /* Last block optionally pad the data with zeros*/ |
---|
4020 | for (loopcounter = 0U; loopcounter < (hcryp->Init.HeaderSize % 4U); loopcounter++) |
---|
4021 | { |
---|
4022 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
4023 | hcryp->CrypHeaderCount++ ; |
---|
4024 | } |
---|
4025 | while (loopcounter < 4U) |
---|
4026 | { |
---|
4027 | /* pad the data with zeros to have a complete block */ |
---|
4028 | hcryp->Instance->DINR = 0x0U; |
---|
4029 | loopcounter++; |
---|
4030 | } |
---|
4031 | } |
---|
4032 | else |
---|
4033 | { |
---|
4034 | /* Write the input block in the IN FIFO */ |
---|
4035 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
4036 | hcryp->CrypHeaderCount++; |
---|
4037 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
4038 | hcryp->CrypHeaderCount++; |
---|
4039 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
4040 | hcryp->CrypHeaderCount++; |
---|
4041 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
4042 | hcryp->CrypHeaderCount++; |
---|
4043 | } |
---|
4044 | |
---|
4045 | } /* end of if (DoKeyIVConfig == 1U) */ |
---|
4046 | else /* Key and IV have already been configured, |
---|
4047 | header has already been processed; |
---|
4048 | only process here message payload */ |
---|
4049 | { |
---|
4050 | /* Write the payload Input block in the IN FIFO */ |
---|
4051 | if (hcryp->Size == 0U) |
---|
4052 | { |
---|
4053 | /* Disable interrupts */ |
---|
4054 | __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); |
---|
4055 | |
---|
4056 | /* Change the CRYP state */ |
---|
4057 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
4058 | |
---|
4059 | /* Process unlocked */ |
---|
4060 | __HAL_UNLOCK(hcryp); |
---|
4061 | } |
---|
4062 | else if (hcryp->Size >= 16U) |
---|
4063 | { |
---|
4064 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
4065 | hcryp->CrypInCount++; |
---|
4066 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
4067 | hcryp->CrypInCount++; |
---|
4068 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
4069 | hcryp->CrypInCount++; |
---|
4070 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
4071 | hcryp->CrypInCount++; |
---|
4072 | |
---|
4073 | if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U)) |
---|
4074 | { |
---|
4075 | /* Call Input transfer complete callback */ |
---|
4076 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
---|
4077 | /*Call registered Input complete callback*/ |
---|
4078 | hcryp->InCpltCallback(hcryp); |
---|
4079 | #else |
---|
4080 | /*Call legacy weak Input complete callback*/ |
---|
4081 | HAL_CRYP_InCpltCallback(hcryp); |
---|
4082 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
---|
4083 | } |
---|
4084 | } |
---|
4085 | else /* Size < 4 words : first block is the last block*/ |
---|
4086 | { |
---|
4087 | /* Compute the number of padding bytes in last block of payload */ |
---|
4088 | npblb = 16U - (uint32_t)hcryp->Size; |
---|
4089 | |
---|
4090 | mode = hcryp->Instance->CR & AES_CR_MODE; |
---|
4091 | if (((mode == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) || |
---|
4092 | ((mode == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM))) |
---|
4093 | { |
---|
4094 | /* Specify the number of non-valid bytes using NPBLB register*/ |
---|
4095 | MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U); |
---|
4096 | } |
---|
4097 | |
---|
4098 | /* Number of valid words (lastwordsize) in last block */ |
---|
4099 | if ((npblb % 4U) == 0U) |
---|
4100 | { |
---|
4101 | lastwordsize = (16U - npblb) / 4U; |
---|
4102 | } |
---|
4103 | else |
---|
4104 | { |
---|
4105 | lastwordsize = ((16U - npblb) / 4U) + 1U; |
---|
4106 | } |
---|
4107 | |
---|
4108 | /* Last block optionally pad the data with zeros*/ |
---|
4109 | for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++) |
---|
4110 | { |
---|
4111 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
4112 | hcryp->CrypInCount++; |
---|
4113 | } |
---|
4114 | while (loopcounter < 4U) |
---|
4115 | { |
---|
4116 | /* Pad the data with zeros to have a complete block */ |
---|
4117 | hcryp->Instance->DINR = 0x0U; |
---|
4118 | loopcounter++; |
---|
4119 | } |
---|
4120 | } |
---|
4121 | } |
---|
4122 | |
---|
4123 | /* Return function status */ |
---|
4124 | return HAL_OK; |
---|
4125 | } |
---|
4126 | |
---|
4127 | /** |
---|
4128 | * @brief AES CCM encryption/decryption process in DMA mode |
---|
4129 | * for TinyAES peripheral, no encrypt/decrypt performed, only authentication preparation. |
---|
4130 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
4131 | * the configuration information for CRYP module |
---|
4132 | * @retval HAL status |
---|
4133 | */ |
---|
4134 | static HAL_StatusTypeDef CRYP_AESCCM_Process_DMA(CRYP_HandleTypeDef *hcryp) |
---|
4135 | { |
---|
4136 | __IO uint32_t count = 0U; |
---|
4137 | uint16_t wordsize = hcryp->Size / 4U ; |
---|
4138 | uint32_t index; |
---|
4139 | uint32_t npblb; |
---|
4140 | uint32_t lastwordsize; |
---|
4141 | uint32_t temp; /* Temporary CrypOutBuff */ |
---|
4142 | uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */ |
---|
4143 | |
---|
4144 | if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE) |
---|
4145 | { |
---|
4146 | if (hcryp->KeyIVConfig == 1U) |
---|
4147 | { |
---|
4148 | /* If the Key and IV configuration has to be done only once |
---|
4149 | and if it has already been done, skip it */ |
---|
4150 | DoKeyIVConfig = 0U; |
---|
4151 | hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */ |
---|
4152 | } |
---|
4153 | else |
---|
4154 | { |
---|
4155 | /* If the Key and IV configuration has to be done only once |
---|
4156 | and if it has not been done already, do it and set KeyIVConfig |
---|
4157 | to keep track it won't have to be done again next time */ |
---|
4158 | hcryp->KeyIVConfig = 1U; |
---|
4159 | hcryp->SizesSum = hcryp->Size; /* Merely store payload length */ |
---|
4160 | } |
---|
4161 | } |
---|
4162 | else |
---|
4163 | { |
---|
4164 | hcryp->SizesSum = hcryp->Size; |
---|
4165 | } |
---|
4166 | |
---|
4167 | if (DoKeyIVConfig == 1U) |
---|
4168 | { |
---|
4169 | |
---|
4170 | /* Reset CrypHeaderCount */ |
---|
4171 | hcryp->CrypHeaderCount = 0U; |
---|
4172 | |
---|
4173 | |
---|
4174 | /********************** Init phase ******************************************/ |
---|
4175 | |
---|
4176 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT); |
---|
4177 | |
---|
4178 | /* Set the key */ |
---|
4179 | CRYP_SetKey(hcryp, hcryp->Init.KeySize); |
---|
4180 | |
---|
4181 | /* Set the initialization vector (IV) with B0 */ |
---|
4182 | hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.B0); |
---|
4183 | hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.B0 + 1U); |
---|
4184 | hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.B0 + 2U); |
---|
4185 | hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.B0 + 3U); |
---|
4186 | |
---|
4187 | /* Enable the CRYP peripheral */ |
---|
4188 | __HAL_CRYP_ENABLE(hcryp); |
---|
4189 | |
---|
4190 | /* just wait for hash computation */ |
---|
4191 | count = CRYP_TIMEOUT_GCMCCMINITPHASE; |
---|
4192 | do |
---|
4193 | { |
---|
4194 | count-- ; |
---|
4195 | if (count == 0U) |
---|
4196 | { |
---|
4197 | /* Disable the CRYP peripheral clock */ |
---|
4198 | __HAL_CRYP_DISABLE(hcryp); |
---|
4199 | |
---|
4200 | /* Change state */ |
---|
4201 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
---|
4202 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
4203 | |
---|
4204 | /* Process unlocked */ |
---|
4205 | __HAL_UNLOCK(hcryp); |
---|
4206 | return HAL_ERROR; |
---|
4207 | } |
---|
4208 | } |
---|
4209 | while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)); |
---|
4210 | |
---|
4211 | /* Clear CCF flag */ |
---|
4212 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
---|
4213 | |
---|
4214 | |
---|
4215 | /********************* Header phase *****************************************/ |
---|
4216 | |
---|
4217 | if (CRYP_GCMCCM_SetHeaderPhase_DMA(hcryp) != HAL_OK) |
---|
4218 | { |
---|
4219 | return HAL_ERROR; |
---|
4220 | } |
---|
4221 | |
---|
4222 | /******************** Payload phase *****************************************/ |
---|
4223 | |
---|
4224 | /* Set the phase */ |
---|
4225 | hcryp->Phase = CRYP_PHASE_PROCESS; |
---|
4226 | |
---|
4227 | /* Set to 0 the number of non-valid bytes using NPBLB register*/ |
---|
4228 | MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U); |
---|
4229 | |
---|
4230 | /* Select payload phase once the header phase is performed */ |
---|
4231 | MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_PAYLOAD); |
---|
4232 | |
---|
4233 | } /* if (DoKeyIVConfig == 1U) */ |
---|
4234 | |
---|
4235 | if (hcryp->Size == 0U) |
---|
4236 | { |
---|
4237 | /* Process unLocked */ |
---|
4238 | __HAL_UNLOCK(hcryp); |
---|
4239 | |
---|
4240 | /* Change the CRYP state and phase */ |
---|
4241 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
4242 | } |
---|
4243 | else if (hcryp->Size >= 16U) |
---|
4244 | { |
---|
4245 | /*DMA transfer must not include the last block in case of Size is not %16 */ |
---|
4246 | wordsize = wordsize - (wordsize % 4U); |
---|
4247 | |
---|
4248 | /*DMA transfer */ |
---|
4249 | CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), wordsize, (uint32_t)(hcryp->pCrypOutBuffPtr)); |
---|
4250 | } |
---|
4251 | else /* length of input data is < 16 */ |
---|
4252 | { |
---|
4253 | /* Compute the number of padding bytes in last block of payload */ |
---|
4254 | npblb = 16U - (uint32_t)hcryp->Size; |
---|
4255 | |
---|
4256 | /* Set Npblb in case of AES CCM payload decryption to get right tag*/ |
---|
4257 | if ((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_DECRYPT) |
---|
4258 | { |
---|
4259 | /* Specify the number of non-valid bytes using NPBLB register*/ |
---|
4260 | MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U); |
---|
4261 | } |
---|
4262 | |
---|
4263 | /* Number of valid words (lastwordsize) in last block */ |
---|
4264 | if ((npblb % 4U) == 0U) |
---|
4265 | { |
---|
4266 | lastwordsize = (16U - npblb) / 4U; |
---|
4267 | } |
---|
4268 | else |
---|
4269 | { |
---|
4270 | lastwordsize = ((16U - npblb) / 4U) + 1U; |
---|
4271 | } |
---|
4272 | |
---|
4273 | /* last block optionally pad the data with zeros*/ |
---|
4274 | for (index = 0U; index < lastwordsize; index ++) |
---|
4275 | { |
---|
4276 | /* Write the last Input block in the IN FIFO */ |
---|
4277 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
4278 | hcryp->CrypInCount++; |
---|
4279 | } |
---|
4280 | while (index < 4U) |
---|
4281 | { |
---|
4282 | /* pad the data with zeros to have a complete block */ |
---|
4283 | hcryp->Instance->DINR = 0U; |
---|
4284 | index++; |
---|
4285 | } |
---|
4286 | /* Wait for CCF flag to be raised */ |
---|
4287 | count = CRYP_TIMEOUT_GCMCCMHEADERPHASE; |
---|
4288 | do |
---|
4289 | { |
---|
4290 | count-- ; |
---|
4291 | if (count == 0U) |
---|
4292 | { |
---|
4293 | /* Disable the CRYP peripheral clock */ |
---|
4294 | __HAL_CRYP_DISABLE(hcryp); |
---|
4295 | |
---|
4296 | /* Change state */ |
---|
4297 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
---|
4298 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
4299 | |
---|
4300 | /* Process unlocked */ |
---|
4301 | __HAL_UNLOCK(hcryp); |
---|
4302 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
---|
4303 | /*Call registered error callback*/ |
---|
4304 | hcryp->ErrorCallback(hcryp); |
---|
4305 | #else |
---|
4306 | /*Call legacy weak error callback*/ |
---|
4307 | HAL_CRYP_ErrorCallback(hcryp); |
---|
4308 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
---|
4309 | } |
---|
4310 | } |
---|
4311 | while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)); |
---|
4312 | |
---|
4313 | /* Clear CCF Flag */ |
---|
4314 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
---|
4315 | |
---|
4316 | /*Read the output block from the output FIFO */ |
---|
4317 | for (index = 0U; index < 4U; index++) |
---|
4318 | { |
---|
4319 | /* Read the output block from the output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer */ |
---|
4320 | temp = hcryp->Instance->DOUTR; |
---|
4321 | |
---|
4322 | *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp; |
---|
4323 | hcryp->CrypOutCount++; |
---|
4324 | } |
---|
4325 | |
---|
4326 | /* Change the CRYP state to ready */ |
---|
4327 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
4328 | |
---|
4329 | /* Process unlocked */ |
---|
4330 | __HAL_UNLOCK(hcryp); |
---|
4331 | } |
---|
4332 | |
---|
4333 | /* Return function status */ |
---|
4334 | return HAL_OK; |
---|
4335 | } |
---|
4336 | |
---|
4337 | /** |
---|
4338 | * @brief Sets the payload phase in interrupt mode |
---|
4339 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
4340 | * the configuration information for CRYP module |
---|
4341 | * @retval state |
---|
4342 | */ |
---|
4343 | static void CRYP_GCMCCM_SetPayloadPhase_IT(CRYP_HandleTypeDef *hcryp) |
---|
4344 | { |
---|
4345 | uint32_t loopcounter; |
---|
4346 | uint32_t temp; /* Temporary CrypOutBuff */ |
---|
4347 | uint32_t lastwordsize; |
---|
4348 | uint32_t npblb; |
---|
4349 | uint32_t mode; |
---|
4350 | uint16_t incount; /* Temporary CrypInCount Value */ |
---|
4351 | uint16_t outcount; /* Temporary CrypOutCount Value */ |
---|
4352 | |
---|
4353 | /***************************** Payload phase *******************************/ |
---|
4354 | |
---|
4355 | /* Read the output block from the output FIFO and put them in temporary buffer then get CrypOutBuff from temporary buffer*/ |
---|
4356 | temp = hcryp->Instance->DOUTR; |
---|
4357 | *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp; |
---|
4358 | hcryp->CrypOutCount++; |
---|
4359 | temp = hcryp->Instance->DOUTR; |
---|
4360 | *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp; |
---|
4361 | hcryp->CrypOutCount++; |
---|
4362 | temp = hcryp->Instance->DOUTR; |
---|
4363 | *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp; |
---|
4364 | hcryp->CrypOutCount++; |
---|
4365 | temp = hcryp->Instance->DOUTR; |
---|
4366 | *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp; |
---|
4367 | hcryp->CrypOutCount++; |
---|
4368 | |
---|
4369 | incount = hcryp->CrypInCount; |
---|
4370 | outcount = hcryp->CrypOutCount; |
---|
4371 | if ((outcount >= (hcryp->Size / 4U)) && ((incount * 4U) >= hcryp->Size)) |
---|
4372 | { |
---|
4373 | |
---|
4374 | /* When in CCM with Key and IV configuration skipped, don't disable interruptions */ |
---|
4375 | if (!((hcryp->Init.Algorithm == CRYP_AES_CCM) && (hcryp->KeyIVConfig == 1U))) |
---|
4376 | { |
---|
4377 | /* Disable computation complete flag and errors interrupts */ |
---|
4378 | __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); |
---|
4379 | } |
---|
4380 | |
---|
4381 | /* Change the CRYP state */ |
---|
4382 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
4383 | |
---|
4384 | /* Process unlocked */ |
---|
4385 | __HAL_UNLOCK(hcryp); |
---|
4386 | |
---|
4387 | /* Call output transfer complete callback */ |
---|
4388 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
---|
4389 | /*Call registered Output complete callback*/ |
---|
4390 | hcryp->OutCpltCallback(hcryp); |
---|
4391 | #else |
---|
4392 | /*Call legacy weak Output complete callback*/ |
---|
4393 | HAL_CRYP_OutCpltCallback(hcryp); |
---|
4394 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
---|
4395 | } |
---|
4396 | |
---|
4397 | else if (((hcryp->Size / 4U) - (hcryp->CrypInCount)) >= 4U) |
---|
4398 | { |
---|
4399 | |
---|
4400 | #if (USE_HAL_CRYP_SUSPEND_RESUME == 1U) |
---|
4401 | /* If suspension flag has been raised, suspend processing |
---|
4402 | only if not already at the end of the payload */ |
---|
4403 | if (hcryp->SuspendRequest == HAL_CRYP_SUSPEND) |
---|
4404 | { |
---|
4405 | /* Clear CCF Flag */ |
---|
4406 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
---|
4407 | |
---|
4408 | /* reset SuspendRequest */ |
---|
4409 | hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE; |
---|
4410 | /* Disable Computation Complete Flag and Errors Interrupts */ |
---|
4411 | __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE|CRYP_IT_ERRIE); |
---|
4412 | /* Change the CRYP state */ |
---|
4413 | hcryp->State = HAL_CRYP_STATE_SUSPENDED; |
---|
4414 | /* Mark that the payload phase is suspended */ |
---|
4415 | hcryp->Phase = CRYP_PHASE_PAYLOAD_SUSPENDED; |
---|
4416 | |
---|
4417 | /* Process Unlocked */ |
---|
4418 | __HAL_UNLOCK(hcryp); |
---|
4419 | } |
---|
4420 | else |
---|
4421 | #endif /* USE_HAL_CRYP_SUSPEND_RESUME */ |
---|
4422 | { |
---|
4423 | /* Write the input block in the IN FIFO */ |
---|
4424 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
4425 | hcryp->CrypInCount++; |
---|
4426 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
4427 | hcryp->CrypInCount++; |
---|
4428 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
4429 | hcryp->CrypInCount++; |
---|
4430 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
4431 | hcryp->CrypInCount++; |
---|
4432 | if ((hcryp->CrypInCount == hcryp->Size) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) |
---|
4433 | { |
---|
4434 | /* Call output transfer complete callback */ |
---|
4435 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
---|
4436 | /*Call registered Input complete callback*/ |
---|
4437 | hcryp->InCpltCallback(hcryp); |
---|
4438 | #else |
---|
4439 | /*Call legacy weak Input complete callback*/ |
---|
4440 | HAL_CRYP_InCpltCallback(hcryp); |
---|
4441 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
---|
4442 | } |
---|
4443 | } |
---|
4444 | } |
---|
4445 | else /* Last block of payload < 128bit*/ |
---|
4446 | { |
---|
4447 | /* Compute the number of padding bytes in last block of payload */ |
---|
4448 | npblb = ((((uint32_t)hcryp->Size / 16U) + 1U) * 16U) - ((uint32_t)hcryp->Size); |
---|
4449 | |
---|
4450 | mode = hcryp->Instance->CR & AES_CR_MODE; |
---|
4451 | if (((mode == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) || |
---|
4452 | ((mode == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM))) |
---|
4453 | { |
---|
4454 | /* Specify the number of non-valid bytes using NPBLB register*/ |
---|
4455 | MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U); |
---|
4456 | } |
---|
4457 | |
---|
4458 | /* Number of valid words (lastwordsize) in last block */ |
---|
4459 | if ((npblb % 4U) == 0U) |
---|
4460 | { |
---|
4461 | lastwordsize = (16U - npblb) / 4U; |
---|
4462 | } |
---|
4463 | else |
---|
4464 | { |
---|
4465 | lastwordsize = ((16U - npblb) / 4U) + 1U; |
---|
4466 | } |
---|
4467 | |
---|
4468 | /* Last block optionally pad the data with zeros*/ |
---|
4469 | for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++) |
---|
4470 | { |
---|
4471 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
4472 | hcryp->CrypInCount++; |
---|
4473 | } |
---|
4474 | while (loopcounter < 4U) |
---|
4475 | { |
---|
4476 | /* pad the data with zeros to have a complete block */ |
---|
4477 | hcryp->Instance->DINR = 0x0U; |
---|
4478 | loopcounter++; |
---|
4479 | } |
---|
4480 | } |
---|
4481 | } |
---|
4482 | |
---|
4483 | |
---|
4484 | /** |
---|
4485 | * @brief Sets the header phase in polling mode |
---|
4486 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
4487 | * the configuration information for CRYP module(Header & HeaderSize) |
---|
4488 | * @param Timeout Timeout value |
---|
4489 | * @retval state |
---|
4490 | */ |
---|
4491 | static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint32_t Timeout) |
---|
4492 | { |
---|
4493 | uint32_t loopcounter; |
---|
4494 | |
---|
4495 | /***************************** Header phase for GCM/GMAC or CCM *********************************/ |
---|
4496 | |
---|
4497 | if ((hcryp->Init.HeaderSize != 0U)) |
---|
4498 | { |
---|
4499 | /* Select header phase */ |
---|
4500 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER); |
---|
4501 | |
---|
4502 | /* Enable the CRYP peripheral */ |
---|
4503 | __HAL_CRYP_ENABLE(hcryp); |
---|
4504 | |
---|
4505 | if ((hcryp->Init.HeaderSize % 4U) == 0U) |
---|
4506 | { |
---|
4507 | /* HeaderSize %4, no padding */ |
---|
4508 | for (loopcounter = 0U; (loopcounter < hcryp->Init.HeaderSize); loopcounter += 4U) |
---|
4509 | { |
---|
4510 | /* Write the input block in the data input register */ |
---|
4511 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
4512 | hcryp->CrypHeaderCount++ ; |
---|
4513 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
4514 | hcryp->CrypHeaderCount++ ; |
---|
4515 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
4516 | hcryp->CrypHeaderCount++ ; |
---|
4517 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
4518 | hcryp->CrypHeaderCount++ ; |
---|
4519 | |
---|
4520 | if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK) |
---|
4521 | { |
---|
4522 | /* Disable the CRYP peripheral clock */ |
---|
4523 | __HAL_CRYP_DISABLE(hcryp); |
---|
4524 | |
---|
4525 | /* Change state */ |
---|
4526 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
---|
4527 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
4528 | |
---|
4529 | /* Process unlocked */ |
---|
4530 | __HAL_UNLOCK(hcryp); |
---|
4531 | return HAL_ERROR; |
---|
4532 | } |
---|
4533 | /* Clear CCF flag */ |
---|
4534 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
---|
4535 | } |
---|
4536 | } |
---|
4537 | else |
---|
4538 | { |
---|
4539 | /*Write header block in the IN FIFO without last block */ |
---|
4540 | for (loopcounter = 0U; (loopcounter < ((hcryp->Init.HeaderSize) - (hcryp->Init.HeaderSize % 4U))); loopcounter += 4U) |
---|
4541 | { |
---|
4542 | /* Write the input block in the data input register */ |
---|
4543 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
4544 | hcryp->CrypHeaderCount++ ; |
---|
4545 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
4546 | hcryp->CrypHeaderCount++ ; |
---|
4547 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
4548 | hcryp->CrypHeaderCount++ ; |
---|
4549 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
4550 | hcryp->CrypHeaderCount++ ; |
---|
4551 | |
---|
4552 | if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK) |
---|
4553 | { |
---|
4554 | /* Disable the CRYP peripheral clock */ |
---|
4555 | __HAL_CRYP_DISABLE(hcryp); |
---|
4556 | |
---|
4557 | /* Change state */ |
---|
4558 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
---|
4559 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
4560 | |
---|
4561 | /* Process unlocked */ |
---|
4562 | __HAL_UNLOCK(hcryp); |
---|
4563 | return HAL_ERROR; |
---|
4564 | } |
---|
4565 | /* Clear CCF flag */ |
---|
4566 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
---|
4567 | } |
---|
4568 | /* Last block optionally pad the data with zeros*/ |
---|
4569 | for (loopcounter = 0U; (loopcounter < (hcryp->Init.HeaderSize % 4U)); loopcounter++) |
---|
4570 | { |
---|
4571 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
4572 | hcryp->CrypHeaderCount++ ; |
---|
4573 | } |
---|
4574 | while (loopcounter < 4U) |
---|
4575 | { |
---|
4576 | /*Pad the data with zeros to have a complete block */ |
---|
4577 | hcryp->Instance->DINR = 0x0U; |
---|
4578 | loopcounter++; |
---|
4579 | } |
---|
4580 | |
---|
4581 | if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK) |
---|
4582 | { |
---|
4583 | /* Disable the CRYP peripheral clock */ |
---|
4584 | __HAL_CRYP_DISABLE(hcryp); |
---|
4585 | |
---|
4586 | /* Change state */ |
---|
4587 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
---|
4588 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
4589 | |
---|
4590 | /* Process unlocked */ |
---|
4591 | __HAL_UNLOCK(hcryp); |
---|
4592 | return HAL_ERROR; |
---|
4593 | } |
---|
4594 | /* Clear CCF flag */ |
---|
4595 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
---|
4596 | } |
---|
4597 | } |
---|
4598 | else |
---|
4599 | { |
---|
4600 | if (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC) |
---|
4601 | { |
---|
4602 | /*Workaround 1: only AES, before re-enabling the peripheral, datatype can be configured.*/ |
---|
4603 | MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, hcryp->Init.DataType); |
---|
4604 | |
---|
4605 | /* Select header phase */ |
---|
4606 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER); |
---|
4607 | |
---|
4608 | /* Enable the CRYP peripheral */ |
---|
4609 | __HAL_CRYP_ENABLE(hcryp); |
---|
4610 | } |
---|
4611 | } |
---|
4612 | /* Return function status */ |
---|
4613 | return HAL_OK; |
---|
4614 | } |
---|
4615 | |
---|
4616 | /** |
---|
4617 | * @brief Sets the header phase when using DMA in process |
---|
4618 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
4619 | * the configuration information for CRYP module(Header & HeaderSize) |
---|
4620 | * @retval None |
---|
4621 | */ |
---|
4622 | static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase_DMA(CRYP_HandleTypeDef *hcryp) |
---|
4623 | { |
---|
4624 | __IO uint32_t count = 0U; |
---|
4625 | uint32_t loopcounter; |
---|
4626 | |
---|
4627 | /***************************** Header phase for GCM/GMAC or CCM *********************************/ |
---|
4628 | if ((hcryp->Init.HeaderSize != 0U)) |
---|
4629 | { |
---|
4630 | /* Select header phase */ |
---|
4631 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER); |
---|
4632 | |
---|
4633 | /* Enable the CRYP peripheral */ |
---|
4634 | __HAL_CRYP_ENABLE(hcryp); |
---|
4635 | |
---|
4636 | if ((hcryp->Init.HeaderSize % 4U) == 0U) |
---|
4637 | { |
---|
4638 | /* HeaderSize %4, no padding */ |
---|
4639 | for (loopcounter = 0U; (loopcounter < hcryp->Init.HeaderSize); loopcounter += 4U) |
---|
4640 | { |
---|
4641 | /* Write the input block in the data input register */ |
---|
4642 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
4643 | hcryp->CrypHeaderCount++ ; |
---|
4644 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
4645 | hcryp->CrypHeaderCount++ ; |
---|
4646 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
4647 | hcryp->CrypHeaderCount++ ; |
---|
4648 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
4649 | hcryp->CrypHeaderCount++ ; |
---|
4650 | |
---|
4651 | /*Wait on CCF flag*/ |
---|
4652 | count = CRYP_TIMEOUT_GCMCCMHEADERPHASE; |
---|
4653 | do |
---|
4654 | { |
---|
4655 | count-- ; |
---|
4656 | if (count == 0U) |
---|
4657 | { |
---|
4658 | /* Disable the CRYP peripheral clock */ |
---|
4659 | __HAL_CRYP_DISABLE(hcryp); |
---|
4660 | |
---|
4661 | /* Change state */ |
---|
4662 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
---|
4663 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
4664 | |
---|
4665 | /* Process unlocked */ |
---|
4666 | __HAL_UNLOCK(hcryp); |
---|
4667 | return HAL_ERROR; |
---|
4668 | } |
---|
4669 | } |
---|
4670 | while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)); |
---|
4671 | |
---|
4672 | /* Clear CCF flag */ |
---|
4673 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
---|
4674 | } |
---|
4675 | } |
---|
4676 | else |
---|
4677 | { |
---|
4678 | /*Write header block in the IN FIFO without last block */ |
---|
4679 | for (loopcounter = 0U; (loopcounter < ((hcryp->Init.HeaderSize) - (hcryp->Init.HeaderSize % 4U))); loopcounter += 4U) |
---|
4680 | { |
---|
4681 | /* Write the Input block in the Data Input register */ |
---|
4682 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
4683 | hcryp->CrypHeaderCount++ ; |
---|
4684 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
4685 | hcryp->CrypHeaderCount++ ; |
---|
4686 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
4687 | hcryp->CrypHeaderCount++ ; |
---|
4688 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
4689 | hcryp->CrypHeaderCount++ ; |
---|
4690 | |
---|
4691 | /*Wait on CCF flag*/ |
---|
4692 | count = CRYP_TIMEOUT_GCMCCMHEADERPHASE; |
---|
4693 | do |
---|
4694 | { |
---|
4695 | count-- ; |
---|
4696 | if (count == 0U) |
---|
4697 | { |
---|
4698 | /* Disable the CRYP peripheral clock */ |
---|
4699 | __HAL_CRYP_DISABLE(hcryp); |
---|
4700 | |
---|
4701 | /* Change state */ |
---|
4702 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
---|
4703 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
4704 | |
---|
4705 | /* Process unlocked */ |
---|
4706 | __HAL_UNLOCK(hcryp); |
---|
4707 | return HAL_ERROR; |
---|
4708 | } |
---|
4709 | } |
---|
4710 | while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)); |
---|
4711 | |
---|
4712 | /* Clear CCF flag */ |
---|
4713 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
---|
4714 | } |
---|
4715 | /* Last block optionally pad the data with zeros*/ |
---|
4716 | for (loopcounter = 0U; (loopcounter < (hcryp->Init.HeaderSize % 4U)); loopcounter++) |
---|
4717 | { |
---|
4718 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
4719 | hcryp->CrypHeaderCount++ ; |
---|
4720 | } |
---|
4721 | while (loopcounter < 4U) |
---|
4722 | { |
---|
4723 | /* Pad the data with zeros to have a complete block */ |
---|
4724 | hcryp->Instance->DINR = 0x0U; |
---|
4725 | loopcounter++; |
---|
4726 | } |
---|
4727 | |
---|
4728 | /*Wait on CCF flag*/ |
---|
4729 | count = CRYP_TIMEOUT_GCMCCMHEADERPHASE; |
---|
4730 | do |
---|
4731 | { |
---|
4732 | count-- ; |
---|
4733 | if (count == 0U) |
---|
4734 | { |
---|
4735 | /* Disable the CRYP peripheral clock */ |
---|
4736 | __HAL_CRYP_DISABLE(hcryp); |
---|
4737 | |
---|
4738 | /* Change state */ |
---|
4739 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
---|
4740 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
4741 | |
---|
4742 | /* Process unlocked */ |
---|
4743 | __HAL_UNLOCK(hcryp); |
---|
4744 | return HAL_ERROR; |
---|
4745 | } |
---|
4746 | } |
---|
4747 | while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)); |
---|
4748 | |
---|
4749 | /* Clear CCF flag */ |
---|
4750 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
---|
4751 | } |
---|
4752 | } |
---|
4753 | else |
---|
4754 | { |
---|
4755 | /* Select header phase */ |
---|
4756 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER); |
---|
4757 | |
---|
4758 | /* Enable the CRYP peripheral */ |
---|
4759 | __HAL_CRYP_ENABLE(hcryp); |
---|
4760 | } |
---|
4761 | /* Return function status */ |
---|
4762 | return HAL_OK; |
---|
4763 | } |
---|
4764 | |
---|
4765 | /** |
---|
4766 | * @brief Sets the header phase in interrupt mode |
---|
4767 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
4768 | * the configuration information for CRYP module(Header & HeaderSize) |
---|
4769 | * @retval None |
---|
4770 | */ |
---|
4771 | static void CRYP_GCMCCM_SetHeaderPhase_IT(CRYP_HandleTypeDef *hcryp) |
---|
4772 | { |
---|
4773 | uint32_t loopcounter; |
---|
4774 | uint32_t lastwordsize; |
---|
4775 | uint32_t npblb; |
---|
4776 | uint32_t mode; |
---|
4777 | |
---|
4778 | /***************************** Header phase *********************************/ |
---|
4779 | if (hcryp->Init.HeaderSize == hcryp->CrypHeaderCount) |
---|
4780 | { |
---|
4781 | /* Set the phase */ |
---|
4782 | hcryp->Phase = CRYP_PHASE_PROCESS; |
---|
4783 | /* Select payload phase */ |
---|
4784 | MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_PAYLOAD); |
---|
4785 | /* Set to 0 the number of non-valid bytes using NPBLB register*/ |
---|
4786 | MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U); |
---|
4787 | |
---|
4788 | if (hcryp->Init.Algorithm == CRYP_AES_CCM) |
---|
4789 | { |
---|
4790 | /* Increment CrypHeaderCount to pass in CRYP_GCMCCM_SetPayloadPhase_IT */ |
---|
4791 | hcryp->CrypHeaderCount++; |
---|
4792 | } |
---|
4793 | /* Write the payload Input block in the IN FIFO */ |
---|
4794 | if (hcryp->Size == 0U) |
---|
4795 | { |
---|
4796 | /* Disable interrupts */ |
---|
4797 | __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE); |
---|
4798 | |
---|
4799 | /* Change the CRYP state */ |
---|
4800 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
4801 | |
---|
4802 | /* Process unlocked */ |
---|
4803 | __HAL_UNLOCK(hcryp); |
---|
4804 | } |
---|
4805 | else if (hcryp->Size >= 16U) |
---|
4806 | { |
---|
4807 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
4808 | hcryp->CrypInCount++; |
---|
4809 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
4810 | hcryp->CrypInCount++; |
---|
4811 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
4812 | hcryp->CrypInCount++; |
---|
4813 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
4814 | hcryp->CrypInCount++; |
---|
4815 | |
---|
4816 | if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U)) |
---|
4817 | { |
---|
4818 | /* Call the input data transfer complete callback */ |
---|
4819 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U) |
---|
4820 | /*Call registered Input complete callback*/ |
---|
4821 | hcryp->InCpltCallback(hcryp); |
---|
4822 | #else |
---|
4823 | /*Call legacy weak Input complete callback*/ |
---|
4824 | HAL_CRYP_InCpltCallback(hcryp); |
---|
4825 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
---|
4826 | } |
---|
4827 | } |
---|
4828 | else /* Size < 4 words : first block is the last block*/ |
---|
4829 | { |
---|
4830 | /* Compute the number of padding bytes in last block of payload */ |
---|
4831 | npblb = 16U - ((uint32_t)hcryp->Size); |
---|
4832 | mode = hcryp->Instance->CR & AES_CR_MODE; |
---|
4833 | if (((mode == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) || |
---|
4834 | ((mode == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM))) |
---|
4835 | { |
---|
4836 | /* Specify the number of non-valid bytes using NPBLB register*/ |
---|
4837 | MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U); |
---|
4838 | } |
---|
4839 | |
---|
4840 | /* Number of valid words (lastwordsize) in last block */ |
---|
4841 | if ((npblb % 4U) == 0U) |
---|
4842 | { |
---|
4843 | lastwordsize = (16U - npblb) / 4U; |
---|
4844 | } |
---|
4845 | else |
---|
4846 | { |
---|
4847 | lastwordsize = ((16U - npblb) / 4U) + 1U; |
---|
4848 | } |
---|
4849 | |
---|
4850 | /* Last block optionally pad the data with zeros*/ |
---|
4851 | for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++) |
---|
4852 | { |
---|
4853 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount); |
---|
4854 | hcryp->CrypInCount++; |
---|
4855 | } |
---|
4856 | while (loopcounter < 4U) |
---|
4857 | { |
---|
4858 | /* Pad the data with zeros to have a complete block */ |
---|
4859 | hcryp->Instance->DINR = 0x0U; |
---|
4860 | loopcounter++; |
---|
4861 | } |
---|
4862 | } |
---|
4863 | } |
---|
4864 | else if ((((hcryp->Init.HeaderSize) - (hcryp->CrypHeaderCount)) >= 4U)) |
---|
4865 | { |
---|
4866 | |
---|
4867 | #if (USE_HAL_CRYP_SUSPEND_RESUME == 1U) |
---|
4868 | /* If suspension flag has been raised, suspend processing |
---|
4869 | only if not already at the end of the header */ |
---|
4870 | if (hcryp->SuspendRequest == HAL_CRYP_SUSPEND) |
---|
4871 | { |
---|
4872 | /* Clear CCF Flag */ |
---|
4873 | __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR); |
---|
4874 | |
---|
4875 | /* reset SuspendRequest */ |
---|
4876 | hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE; |
---|
4877 | /* Disable Computation Complete Flag and Errors Interrupts */ |
---|
4878 | __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE|CRYP_IT_ERRIE); |
---|
4879 | /* Change the CRYP state */ |
---|
4880 | hcryp->State = HAL_CRYP_STATE_SUSPENDED; |
---|
4881 | /* Mark that the payload phase is suspended */ |
---|
4882 | hcryp->Phase = CRYP_PHASE_HEADER_SUSPENDED; |
---|
4883 | |
---|
4884 | /* Process Unlocked */ |
---|
4885 | __HAL_UNLOCK(hcryp); |
---|
4886 | } |
---|
4887 | else |
---|
4888 | #endif /* USE_HAL_CRYP_SUSPEND_RESUME */ |
---|
4889 | { |
---|
4890 | /* Write the input block in the IN FIFO */ |
---|
4891 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
4892 | hcryp->CrypHeaderCount++; |
---|
4893 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
4894 | hcryp->CrypHeaderCount++; |
---|
4895 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
4896 | hcryp->CrypHeaderCount++; |
---|
4897 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
4898 | hcryp->CrypHeaderCount++; |
---|
4899 | } |
---|
4900 | } |
---|
4901 | else /*HeaderSize < 4 or HeaderSize >4 & HeaderSize %4 != 0*/ |
---|
4902 | { |
---|
4903 | /* Last block optionally pad the data with zeros*/ |
---|
4904 | for (loopcounter = 0U; loopcounter < (hcryp->Init.HeaderSize % 4U); loopcounter++) |
---|
4905 | { |
---|
4906 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
4907 | hcryp->CrypHeaderCount++ ; |
---|
4908 | } |
---|
4909 | while (loopcounter < 4U) |
---|
4910 | { |
---|
4911 | /* pad the data with zeros to have a complete block */ |
---|
4912 | hcryp->Instance->DINR = 0x0U; |
---|
4913 | loopcounter++; |
---|
4914 | } |
---|
4915 | } |
---|
4916 | } |
---|
4917 | |
---|
4918 | /** |
---|
4919 | * @brief Handle CRYP hardware block Timeout when waiting for CCF flag to be raised. |
---|
4920 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
4921 | * the configuration information for CRYP module. |
---|
4922 | * @param Timeout Timeout duration. |
---|
4923 | * @retval HAL status |
---|
4924 | */ |
---|
4925 | static HAL_StatusTypeDef CRYP_WaitOnCCFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout) |
---|
4926 | { |
---|
4927 | uint32_t tickstart; |
---|
4928 | |
---|
4929 | /* Get timeout */ |
---|
4930 | tickstart = HAL_GetTick(); |
---|
4931 | |
---|
4932 | while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF)) |
---|
4933 | { |
---|
4934 | /* Check for the Timeout */ |
---|
4935 | if (Timeout != HAL_MAX_DELAY) |
---|
4936 | { |
---|
4937 | if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) |
---|
4938 | { |
---|
4939 | return HAL_ERROR; |
---|
4940 | } |
---|
4941 | } |
---|
4942 | } |
---|
4943 | return HAL_OK; |
---|
4944 | } |
---|
4945 | |
---|
4946 | |
---|
4947 | #if (USE_HAL_CRYP_SUSPEND_RESUME == 1U) |
---|
4948 | /** |
---|
4949 | * @brief In case of message processing suspension, read the Initialization Vector. |
---|
4950 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
4951 | * the configuration information for CRYP module. |
---|
4952 | * @param Output Pointer to the buffer containing the saved Initialization Vector. |
---|
4953 | * @note This value has to be stored for reuse by writing the AES_IVRx registers |
---|
4954 | * as soon as the suspended processing has to be resumed. |
---|
4955 | * @retval None |
---|
4956 | */ |
---|
4957 | static void CRYP_Read_IVRegisters(CRYP_HandleTypeDef *hcryp, uint32_t* Output) |
---|
4958 | { |
---|
4959 | uint32_t outputaddr = (uint32_t)Output; |
---|
4960 | |
---|
4961 | *(uint32_t*)(outputaddr) = hcryp->Instance->IVR3; |
---|
4962 | outputaddr+=4U; |
---|
4963 | *(uint32_t*)(outputaddr) = hcryp->Instance->IVR2; |
---|
4964 | outputaddr+=4U; |
---|
4965 | *(uint32_t*)(outputaddr) = hcryp->Instance->IVR1; |
---|
4966 | outputaddr+=4U; |
---|
4967 | *(uint32_t*)(outputaddr) = hcryp->Instance->IVR0; |
---|
4968 | } |
---|
4969 | |
---|
4970 | /** |
---|
4971 | * @brief In case of message processing resumption, rewrite the Initialization |
---|
4972 | * Vector in the AES_IVRx registers. |
---|
4973 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
4974 | * the configuration information for CRYP module. |
---|
4975 | * @param Input Pointer to the buffer containing the saved Initialization Vector to |
---|
4976 | * write back in the CRYP hardware block. |
---|
4977 | * @note AES must be disabled when reconfiguring the IV values. |
---|
4978 | * @retval None |
---|
4979 | */ |
---|
4980 | static void CRYP_Write_IVRegisters(CRYP_HandleTypeDef *hcryp, uint32_t* Input) |
---|
4981 | { |
---|
4982 | uint32_t ivaddr = (uint32_t)Input; |
---|
4983 | |
---|
4984 | hcryp->Instance->IVR3 = *(uint32_t*)(ivaddr); |
---|
4985 | ivaddr+=4U; |
---|
4986 | hcryp->Instance->IVR2 = *(uint32_t*)(ivaddr); |
---|
4987 | ivaddr+=4U; |
---|
4988 | hcryp->Instance->IVR1 = *(uint32_t*)(ivaddr); |
---|
4989 | ivaddr+=4U; |
---|
4990 | hcryp->Instance->IVR0 = *(uint32_t*)(ivaddr); |
---|
4991 | } |
---|
4992 | |
---|
4993 | /** |
---|
4994 | * @brief In case of message GCM/GMAC/CCM processing suspension, |
---|
4995 | * read the Suspend Registers. |
---|
4996 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
4997 | * the configuration information for CRYP module. |
---|
4998 | * @param Output Pointer to the buffer containing the saved Suspend Registers. |
---|
4999 | * @note These values have to be stored for reuse by writing back the AES_SUSPxR registers |
---|
5000 | * as soon as the suspended processing has to be resumed. |
---|
5001 | * @retval None |
---|
5002 | */ |
---|
5003 | static void CRYP_Read_SuspendRegisters(CRYP_HandleTypeDef *hcryp, uint32_t* Output) |
---|
5004 | { |
---|
5005 | uint32_t outputaddr = (uint32_t)Output; |
---|
5006 | __IO uint32_t count = 0U; |
---|
5007 | |
---|
5008 | /* In case of GCM payload phase encryption, check that suspension can be carried out */ |
---|
5009 | if (READ_BIT(hcryp->Instance->CR, (AES_CR_CHMOD|AES_CR_GCMPH|AES_CR_MODE)) == (CRYP_AES_GCM_GMAC|AES_CR_GCMPH_1|0x0)) |
---|
5010 | { |
---|
5011 | |
---|
5012 | /* Wait for BUSY flag to be cleared */ |
---|
5013 | count = 0xFFF; |
---|
5014 | do |
---|
5015 | { |
---|
5016 | count-- ; |
---|
5017 | if(count == 0U) |
---|
5018 | { |
---|
5019 | /* Change state */ |
---|
5020 | hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT; |
---|
5021 | hcryp->State = HAL_CRYP_STATE_READY; |
---|
5022 | |
---|
5023 | /* Process unlocked */ |
---|
5024 | __HAL_UNLOCK(hcryp); |
---|
5025 | HAL_CRYP_ErrorCallback(hcryp); |
---|
5026 | return; |
---|
5027 | } |
---|
5028 | } |
---|
5029 | while(HAL_IS_BIT_SET(hcryp->Instance->SR, AES_SR_BUSY)); |
---|
5030 | |
---|
5031 | } |
---|
5032 | |
---|
5033 | |
---|
5034 | *(uint32_t*)(outputaddr) = hcryp->Instance->SUSP7R; |
---|
5035 | outputaddr+=4U; |
---|
5036 | *(uint32_t*)(outputaddr) = hcryp->Instance->SUSP6R; |
---|
5037 | outputaddr+=4U; |
---|
5038 | *(uint32_t*)(outputaddr) = hcryp->Instance->SUSP5R; |
---|
5039 | outputaddr+=4U; |
---|
5040 | *(uint32_t*)(outputaddr) = hcryp->Instance->SUSP4R; |
---|
5041 | outputaddr+=4U; |
---|
5042 | *(uint32_t*)(outputaddr) = hcryp->Instance->SUSP3R; |
---|
5043 | outputaddr+=4U; |
---|
5044 | *(uint32_t*)(outputaddr) = hcryp->Instance->SUSP2R; |
---|
5045 | outputaddr+=4U; |
---|
5046 | *(uint32_t*)(outputaddr) = hcryp->Instance->SUSP1R; |
---|
5047 | outputaddr+=4U; |
---|
5048 | *(uint32_t*)(outputaddr) = hcryp->Instance->SUSP0R; |
---|
5049 | } |
---|
5050 | |
---|
5051 | /** |
---|
5052 | * @brief In case of message GCM/GMAC/CCM processing resumption, rewrite the Suspend |
---|
5053 | * Registers in the AES_SUSPxR registers. |
---|
5054 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
5055 | * the configuration information for CRYP module. |
---|
5056 | * @param Input Pointer to the buffer containing the saved suspend registers to |
---|
5057 | * write back in the CRYP hardware block. |
---|
5058 | * @note AES must be disabled when reconfiguring the suspend registers. |
---|
5059 | * @retval None |
---|
5060 | */ |
---|
5061 | static void CRYP_Write_SuspendRegisters(CRYP_HandleTypeDef *hcryp, uint32_t* Input) |
---|
5062 | { |
---|
5063 | uint32_t ivaddr = (uint32_t)Input; |
---|
5064 | |
---|
5065 | hcryp->Instance->SUSP7R = *(uint32_t*)(ivaddr); |
---|
5066 | ivaddr+=4U; |
---|
5067 | hcryp->Instance->SUSP6R = *(uint32_t*)(ivaddr); |
---|
5068 | ivaddr+=4U; |
---|
5069 | hcryp->Instance->SUSP5R = *(uint32_t*)(ivaddr); |
---|
5070 | ivaddr+=4U; |
---|
5071 | hcryp->Instance->SUSP4R = *(uint32_t*)(ivaddr); |
---|
5072 | ivaddr+=4U; |
---|
5073 | hcryp->Instance->SUSP3R = *(uint32_t*)(ivaddr); |
---|
5074 | ivaddr+=4U; |
---|
5075 | hcryp->Instance->SUSP2R = *(uint32_t*)(ivaddr); |
---|
5076 | ivaddr+=4U; |
---|
5077 | hcryp->Instance->SUSP1R = *(uint32_t*)(ivaddr); |
---|
5078 | ivaddr+=4U; |
---|
5079 | hcryp->Instance->SUSP0R = *(uint32_t*)(ivaddr); |
---|
5080 | } |
---|
5081 | |
---|
5082 | /** |
---|
5083 | * @brief In case of message GCM/GMAC/CCM processing suspension, read the Key Registers. |
---|
5084 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
5085 | * the configuration information for CRYP module. |
---|
5086 | * @param Output Pointer to the buffer containing the saved Key Registers. |
---|
5087 | * @param KeySize Indicates the key size (128 or 256 bits). |
---|
5088 | * @note These values have to be stored for reuse by writing back the AES_KEYRx registers |
---|
5089 | * as soon as the suspended processing has to be resumed. |
---|
5090 | * @retval None |
---|
5091 | */ |
---|
5092 | static void CRYP_Read_KeyRegisters(CRYP_HandleTypeDef *hcryp, uint32_t* Output, uint32_t KeySize) |
---|
5093 | { |
---|
5094 | uint32_t keyaddr = (uint32_t)Output; |
---|
5095 | |
---|
5096 | switch (KeySize) |
---|
5097 | { |
---|
5098 | case CRYP_KEYSIZE_256B: |
---|
5099 | *(uint32_t*)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey); |
---|
5100 | keyaddr+=4U; |
---|
5101 | *(uint32_t*)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 1U); |
---|
5102 | keyaddr+=4U; |
---|
5103 | *(uint32_t*)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 2U); |
---|
5104 | keyaddr+=4U; |
---|
5105 | *(uint32_t*)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 3U); |
---|
5106 | keyaddr+=4U; |
---|
5107 | *(uint32_t*)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 4U); |
---|
5108 | keyaddr+=4U; |
---|
5109 | *(uint32_t*)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 5U); |
---|
5110 | keyaddr+=4U; |
---|
5111 | *(uint32_t*)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 6U); |
---|
5112 | keyaddr+=4U; |
---|
5113 | *(uint32_t*)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 7U); |
---|
5114 | break; |
---|
5115 | case CRYP_KEYSIZE_128B: |
---|
5116 | *(uint32_t*)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey); |
---|
5117 | keyaddr+=4U; |
---|
5118 | *(uint32_t*)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 1U); |
---|
5119 | keyaddr+=4U; |
---|
5120 | *(uint32_t*)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 2U); |
---|
5121 | keyaddr+=4U; |
---|
5122 | *(uint32_t*)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 3U); |
---|
5123 | break; |
---|
5124 | default: |
---|
5125 | break; |
---|
5126 | } |
---|
5127 | } |
---|
5128 | |
---|
5129 | /** |
---|
5130 | * @brief In case of message GCM/GMAC (CCM/CMAC when applicable) processing resumption, rewrite the Key |
---|
5131 | * Registers in the AES_KEYRx registers. |
---|
5132 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
5133 | * the configuration information for CRYP module. |
---|
5134 | * @param Input Pointer to the buffer containing the saved key registers to |
---|
5135 | * write back in the CRYP hardware block. |
---|
5136 | * @param KeySize Indicates the key size (128 or 256 bits) |
---|
5137 | * @note AES must be disabled when reconfiguring the Key registers. |
---|
5138 | * @retval None |
---|
5139 | */ |
---|
5140 | static void CRYP_Write_KeyRegisters(CRYP_HandleTypeDef *hcryp, uint32_t* Input, uint32_t KeySize) |
---|
5141 | { |
---|
5142 | uint32_t keyaddr = (uint32_t)Input; |
---|
5143 | |
---|
5144 | if (KeySize == CRYP_KEYSIZE_256B) |
---|
5145 | { |
---|
5146 | hcryp->Instance->KEYR7 = *(uint32_t*)(keyaddr); |
---|
5147 | keyaddr+=4; |
---|
5148 | hcryp->Instance->KEYR6 = *(uint32_t*)(keyaddr); |
---|
5149 | keyaddr+=4; |
---|
5150 | hcryp->Instance->KEYR5 = *(uint32_t*)(keyaddr); |
---|
5151 | keyaddr+=4; |
---|
5152 | hcryp->Instance->KEYR4 = *(uint32_t*)(keyaddr); |
---|
5153 | keyaddr+=4; |
---|
5154 | } |
---|
5155 | |
---|
5156 | hcryp->Instance->KEYR3 = *(uint32_t*)(keyaddr); |
---|
5157 | keyaddr+=4; |
---|
5158 | hcryp->Instance->KEYR2 = *(uint32_t*)(keyaddr); |
---|
5159 | keyaddr+=4; |
---|
5160 | hcryp->Instance->KEYR1 = *(uint32_t*)(keyaddr); |
---|
5161 | keyaddr+=4; |
---|
5162 | hcryp->Instance->KEYR0 = *(uint32_t*)(keyaddr); |
---|
5163 | } |
---|
5164 | |
---|
5165 | /** |
---|
5166 | * @brief Authentication phase resumption in case of GCM/GMAC/CCM process in interrupt mode |
---|
5167 | * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains |
---|
5168 | * the configuration information for CRYP module(Header & HeaderSize) |
---|
5169 | * @retval None |
---|
5170 | */ |
---|
5171 | static void CRYP_PhaseProcessingResume(CRYP_HandleTypeDef *hcryp) |
---|
5172 | { |
---|
5173 | uint32_t loopcounter = 0U; |
---|
5174 | uint32_t lastwordsize =0; |
---|
5175 | uint32_t npblb = 0U ; |
---|
5176 | |
---|
5177 | /* Case of header phase resumption =================================================*/ |
---|
5178 | if (hcryp->Phase == CRYP_PHASE_HEADER_SUSPENDED) |
---|
5179 | { |
---|
5180 | /* Set the phase */ |
---|
5181 | hcryp->Phase = CRYP_PHASE_PROCESS; |
---|
5182 | |
---|
5183 | /* Select header phase */ |
---|
5184 | CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER); |
---|
5185 | |
---|
5186 | if (((hcryp->Init.HeaderSize) - (hcryp->CrypHeaderCount) >= 4U)) |
---|
5187 | { |
---|
5188 | /* Write the input block in the IN FIFO */ |
---|
5189 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount ); |
---|
5190 | hcryp->CrypHeaderCount++; |
---|
5191 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount ); |
---|
5192 | hcryp->CrypHeaderCount++; |
---|
5193 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount ); |
---|
5194 | hcryp->CrypHeaderCount++; |
---|
5195 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount ); |
---|
5196 | hcryp->CrypHeaderCount++; |
---|
5197 | } |
---|
5198 | else /*HeaderSize < 4 or HeaderSize >4 & HeaderSize %4 != 0*/ |
---|
5199 | { |
---|
5200 | /* Last block optionally pad the data with zeros*/ |
---|
5201 | for(loopcounter = 0U; loopcounter < (hcryp->Init.HeaderSize %4U ); loopcounter++) |
---|
5202 | { |
---|
5203 | hcryp->Instance->DINR = *(uint32_t*)(hcryp->Init.Header + hcryp->CrypHeaderCount); |
---|
5204 | hcryp->CrypHeaderCount++ ; |
---|
5205 | } |
---|
5206 | while(loopcounter <4U ) |
---|
5207 | { |
---|
5208 | /* pad the data with zeros to have a complete block */ |
---|
5209 | hcryp->Instance->DINR = 0x0U; |
---|
5210 | loopcounter++; |
---|
5211 | } |
---|
5212 | } |
---|
5213 | } |
---|
5214 | /* Case of payload phase resumption =================================================*/ |
---|
5215 | else if (hcryp->Phase == CRYP_PHASE_PAYLOAD_SUSPENDED) |
---|
5216 | { |
---|
5217 | |
---|
5218 | /* Set the phase */ |
---|
5219 | hcryp->Phase = CRYP_PHASE_PROCESS; |
---|
5220 | |
---|
5221 | /* Select payload phase once the header phase is performed */ |
---|
5222 | MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_PAYLOAD); |
---|
5223 | |
---|
5224 | /* Set to 0 the number of non-valid bytes using NPBLB register*/ |
---|
5225 | MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U); |
---|
5226 | |
---|
5227 | if ((hcryp->Size/4) - (hcryp->CrypInCount) >= 4U) |
---|
5228 | { |
---|
5229 | /* Write the input block in the IN FIFO */ |
---|
5230 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount ); |
---|
5231 | hcryp->CrypInCount++; |
---|
5232 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount ); |
---|
5233 | hcryp->CrypInCount++; |
---|
5234 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount ); |
---|
5235 | hcryp->CrypInCount++; |
---|
5236 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount ); |
---|
5237 | hcryp->CrypInCount++; |
---|
5238 | if((hcryp->CrypInCount == hcryp->Size) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) |
---|
5239 | { |
---|
5240 | /* Call output transfer complete callback */ |
---|
5241 | #if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1) |
---|
5242 | /*Call registered Input complete callback*/ |
---|
5243 | hcryp->InCpltCallback(hcryp); |
---|
5244 | #else |
---|
5245 | /*Call legacy weak Input complete callback*/ |
---|
5246 | HAL_CRYP_InCpltCallback(hcryp); |
---|
5247 | #endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */ |
---|
5248 | } |
---|
5249 | } |
---|
5250 | else /* Last block of payload < 128bit*/ |
---|
5251 | { |
---|
5252 | /* Compute the number of padding bytes in last block of payload */ |
---|
5253 | npblb = ((hcryp->Size/16U)+1U)*16U- (hcryp->Size); |
---|
5254 | if((((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) || |
---|
5255 | (((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM))) |
---|
5256 | { |
---|
5257 | /* Specify the number of non-valid bytes using NPBLB register*/ |
---|
5258 | MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb<< 20U); |
---|
5259 | } |
---|
5260 | |
---|
5261 | /* Number of valid words (lastwordsize) in last block */ |
---|
5262 | if (npblb % 4U ==0U) |
---|
5263 | { |
---|
5264 | lastwordsize = (16U-npblb)/4U; |
---|
5265 | } |
---|
5266 | else |
---|
5267 | { |
---|
5268 | lastwordsize = (16U-npblb)/4U +1U; |
---|
5269 | } |
---|
5270 | |
---|
5271 | /* Last block optionally pad the data with zeros*/ |
---|
5272 | for(loopcounter = 0U; loopcounter < lastwordsize; loopcounter++) |
---|
5273 | { |
---|
5274 | hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount ); |
---|
5275 | hcryp->CrypInCount++; |
---|
5276 | } |
---|
5277 | while(loopcounter < 4U ) |
---|
5278 | { |
---|
5279 | /* pad the data with zeros to have a complete block */ |
---|
5280 | hcryp->Instance->DINR = 0x0U; |
---|
5281 | loopcounter++; |
---|
5282 | } |
---|
5283 | } |
---|
5284 | } |
---|
5285 | } |
---|
5286 | #endif /* defined (USE_HAL_CRYP_SUSPEND_RESUME) */ |
---|
5287 | /** |
---|
5288 | * @} |
---|
5289 | */ |
---|
5290 | |
---|
5291 | |
---|
5292 | #endif /* HAL_CRYP_MODULE_ENABLED */ |
---|
5293 | |
---|
5294 | #endif /* AES */ |
---|
5295 | /** |
---|
5296 | * @} |
---|
5297 | */ |
---|
5298 | |
---|
5299 | /** |
---|
5300 | * @} |
---|
5301 | */ |
---|
5302 | /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ |
---|