1 | /* |
---|
2 | * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved. |
---|
3 | * |
---|
4 | * SPDX-License-Identifier: Apache-2.0 |
---|
5 | * |
---|
6 | * Licensed under the Apache License, Version 2.0 (the License); you may |
---|
7 | * not use this file except in compliance with the License. |
---|
8 | * You may obtain a copy of the License at |
---|
9 | * |
---|
10 | * www.apache.org/licenses/LICENSE-2.0 |
---|
11 | * |
---|
12 | * Unless required by applicable law or agreed to in writing, software |
---|
13 | * distributed under the License is distributed on an AS IS BASIS, WITHOUT |
---|
14 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
---|
15 | * See the License for the specific language governing permissions and |
---|
16 | * limitations under the License. |
---|
17 | */ |
---|
18 | |
---|
19 | /* ---------------------------------------------------------------------- |
---|
20 | * Project: CMSIS NN Library |
---|
21 | * Title: arm_nnfunctions.h |
---|
22 | * Description: Public header file for CMSIS NN Library |
---|
23 | * |
---|
24 | * $Date: 13. July 2018 |
---|
25 | * $Revision: V.1.0.0 |
---|
26 | * |
---|
27 | * Target Processor: Cortex-M cores |
---|
28 | * -------------------------------------------------------------------- */ |
---|
29 | |
---|
30 | /** |
---|
31 | \mainpage CMSIS NN Software Library |
---|
32 | * |
---|
33 | * Introduction |
---|
34 | * ------------ |
---|
35 | * |
---|
36 | * This user manual describes the CMSIS NN software library, |
---|
37 | * a collection of efficient neural network kernels developed to maximize the |
---|
38 | * performance and minimize the memory footprint of neural networks on Cortex-M processor cores. |
---|
39 | * |
---|
40 | * The library is divided into a number of functions each covering a specific category: |
---|
41 | * - Neural Network Convolution Functions |
---|
42 | * - Neural Network Activation Functions |
---|
43 | * - Fully-connected Layer Functions |
---|
44 | * - Neural Network Pooling Functions |
---|
45 | * - Softmax Functions |
---|
46 | * - Neural Network Support Functions |
---|
47 | * |
---|
48 | * The library has separate functions for operating on different weight and activation data |
---|
49 | * types including 8-bit integers (q7_t) and 16-bit integers (q15_t). The descrition of the |
---|
50 | * kernels are included in the function description. The implementation details are also |
---|
51 | * described in this paper [1]. |
---|
52 | * |
---|
53 | * Block Diagram |
---|
54 | * -------- |
---|
55 | * \image html CMSIS-NN-OVERVIEW.PNG |
---|
56 | * |
---|
57 | * Examples |
---|
58 | * -------- |
---|
59 | * |
---|
60 | * The library ships with a number of examples which demonstrate how to use the library functions. |
---|
61 | * |
---|
62 | * Pre-processor Macros |
---|
63 | * ------------ |
---|
64 | * |
---|
65 | * Each library project have differant pre-processor macros. |
---|
66 | * |
---|
67 | * - ARM_MATH_DSP: |
---|
68 | * |
---|
69 | * Define macro ARM_MATH_DSP, If the silicon supports DSP instructions. |
---|
70 | * |
---|
71 | * - ARM_MATH_BIG_ENDIAN: |
---|
72 | * |
---|
73 | * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets. |
---|
74 | * |
---|
75 | * - ARM_NN_TRUNCATE: |
---|
76 | * |
---|
77 | * Define macro ARM_NN_TRUNCATE to use floor instead of round-to-the-nearest-int for the computation. |
---|
78 | * |
---|
79 | * Copyright Notice |
---|
80 | * ------------ |
---|
81 | * |
---|
82 | * Copyright (C) 2010-2018 Arm Limited. All rights reserved. |
---|
83 | * |
---|
84 | * [1] CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs https://arxiv.org/abs/1801.06601 |
---|
85 | */ |
---|
86 | |
---|
87 | /** |
---|
88 | * @defgroup groupNN Neural Network Functions |
---|
89 | * These functions perform basic operations for neural network layers. |
---|
90 | */ |
---|
91 | |
---|
92 | #ifndef _ARM_NNFUNCTIONS_H |
---|
93 | #define _ARM_NNFUNCTIONS_H |
---|
94 | |
---|
95 | #include "arm_nnsupportfunctions.h" |
---|
96 | #include "arm_nn_tables.h" |
---|
97 | |
---|
98 | #define USE_INTRINSIC |
---|
99 | |
---|
100 | //#define ARM_NN_TRUNCATE /* This config the rounding model to floor or round to the nearest int */ |
---|
101 | |
---|
102 | #ifdef __cplusplus |
---|
103 | extern "C" |
---|
104 | { |
---|
105 | #endif |
---|
106 | |
---|
107 | /** |
---|
108 | * @defgroup NNConv Neural Network Convolution Functions |
---|
109 | * |
---|
110 | * Perform convolution layer |
---|
111 | * |
---|
112 | * The convolution is implemented in 2 steps: im2col and GEMM |
---|
113 | * |
---|
114 | * im2col is a process of converting each patch of image data into |
---|
115 | * a column. After im2col, the convolution is computed as matrix-matrix |
---|
116 | * multiplication. |
---|
117 | * |
---|
118 | * To reduce the memory footprint, the im2col is performed partially. |
---|
119 | * Each iteration, only a few column (i.e., patches) are generated and |
---|
120 | * computed with GEMM kernels similar to CMSIS-DSP arm_mat_mult functions. |
---|
121 | * |
---|
122 | */ |
---|
123 | |
---|
124 | /** |
---|
125 | * @brief Basic Q7 convolution function |
---|
126 | * @param[in] Im_in pointer to input tensor |
---|
127 | * @param[in] dim_im_in input tensor dimention |
---|
128 | * @param[in] ch_im_in number of input tensor channels |
---|
129 | * @param[in] wt pointer to kernel weights |
---|
130 | * @param[in] ch_im_out number of filters, i.e., output tensor channels |
---|
131 | * @param[in] dim_kernel filter kernel size |
---|
132 | * @param[in] padding padding sizes |
---|
133 | * @param[in] stride convolution stride |
---|
134 | * @param[in] bias pointer to bias |
---|
135 | * @param[in] bias_shift amount of left-shift for bias |
---|
136 | * @param[in] out_shift amount of right-shift for output |
---|
137 | * @param[in,out] Im_out pointer to output tensor |
---|
138 | * @param[in] dim_im_out output tensor dimension |
---|
139 | * @param[in,out] bufferA pointer to buffer space for input |
---|
140 | * @param[in,out] bufferB pointer to buffer space for output |
---|
141 | * @return The function returns <code>ARM_MATH_SUCCESS</code> |
---|
142 | * |
---|
143 | */ |
---|
144 | |
---|
145 | arm_status arm_convolve_HWC_q7_basic(const q7_t * Im_in, |
---|
146 | const uint16_t dim_im_in, |
---|
147 | const uint16_t ch_im_in, |
---|
148 | const q7_t * wt, |
---|
149 | const uint16_t ch_im_out, |
---|
150 | const uint16_t dim_kernel, |
---|
151 | const uint16_t padding, |
---|
152 | const uint16_t stride, |
---|
153 | const q7_t * bias, |
---|
154 | const uint16_t bias_shift, |
---|
155 | const uint16_t out_shift, |
---|
156 | q7_t * Im_out, |
---|
157 | const uint16_t dim_im_out, |
---|
158 | q15_t * bufferA, |
---|
159 | q7_t * bufferB); |
---|
160 | |
---|
161 | /** |
---|
162 | * @brief Basic Q7 convolution function (non-sqaure shape) |
---|
163 | * @param[in] Im_in pointer to input tensor |
---|
164 | * @param[in] dim_im_in_x input tensor dimention x |
---|
165 | * @param[in] dim_im_in_y input tensor dimention y |
---|
166 | * @param[in] ch_im_in number of input tensor channels |
---|
167 | * @param[in] wt pointer to kernel weights |
---|
168 | * @param[in] ch_im_out number of filters, i.e., output tensor channels |
---|
169 | * @param[in] dim_kernel_x filter kernel size x |
---|
170 | * @param[in] dim_kernel_y filter kernel size y |
---|
171 | * @param[in] padding_x padding size x |
---|
172 | * @param[in] padding_y padding size y |
---|
173 | * @param[in] stride_x convolution stride x |
---|
174 | * @param[in] stride_y convolution stride y |
---|
175 | * @param[in] bias pointer to bias |
---|
176 | * @param[in] bias_shift amount of left-shift for bias |
---|
177 | * @param[in] out_shift amount of right-shift for output |
---|
178 | * @param[in,out] Im_out pointer to output tensor |
---|
179 | * @param[in] dim_im_out_x output tensor dimension x |
---|
180 | * @param[in] dim_im_out_y output tensor dimension y |
---|
181 | * @param[in,out] bufferA pointer to buffer space for input |
---|
182 | * @param[in,out] bufferB pointer to buffer space for output |
---|
183 | * @return The function returns <code>ARM_MATH_SUCCESS</code> |
---|
184 | */ |
---|
185 | |
---|
186 | arm_status arm_convolve_HWC_q7_basic_nonsquare(const q7_t * Im_in, |
---|
187 | const uint16_t dim_im_in_x, |
---|
188 | const uint16_t dim_im_in_y, |
---|
189 | const uint16_t ch_im_in, |
---|
190 | const q7_t * wt, |
---|
191 | const uint16_t ch_im_out, |
---|
192 | const uint16_t dim_kernel_x, |
---|
193 | const uint16_t dim_kernel_y, |
---|
194 | const uint16_t padding_x, |
---|
195 | const uint16_t padding_y, |
---|
196 | const uint16_t stride_x, |
---|
197 | const uint16_t stride_y, |
---|
198 | const q7_t * bias, |
---|
199 | const uint16_t bias_shift, |
---|
200 | const uint16_t out_shift, |
---|
201 | q7_t * Im_out, |
---|
202 | const uint16_t dim_im_out_x, |
---|
203 | const uint16_t dim_im_out_y, |
---|
204 | q15_t * bufferA, |
---|
205 | q7_t * bufferB); |
---|
206 | |
---|
207 | /** |
---|
208 | * @brief Basic Q15 convolution function |
---|
209 | * @param[in] Im_in pointer to input tensor |
---|
210 | * @param[in] dim_im_in input tensor dimention |
---|
211 | * @param[in] ch_im_in number of input tensor channels |
---|
212 | * @param[in] wt pointer to kernel weights |
---|
213 | * @param[in] ch_im_out number of filters, i.e., output tensor channels |
---|
214 | * @param[in] dim_kernel filter kernel size |
---|
215 | * @param[in] padding padding sizes |
---|
216 | * @param[in] stride convolution stride |
---|
217 | * @param[in] bias pointer to bias |
---|
218 | * @param[in] bias_shift amount of left-shift for bias |
---|
219 | * @param[in] out_shift amount of right-shift for output |
---|
220 | * @param[in,out] Im_out pointer to output tensor |
---|
221 | * @param[in] dim_im_out output tensor dimension |
---|
222 | * @param[in,out] bufferA pointer to buffer space for input |
---|
223 | * @param[in,out] bufferB pointer to buffer space for output |
---|
224 | * @return The function returns <code>ARM_MATH_SUCCESS</code> |
---|
225 | * |
---|
226 | */ |
---|
227 | |
---|
228 | arm_status arm_convolve_HWC_q15_basic(const q15_t * Im_in, |
---|
229 | const uint16_t dim_im_in, |
---|
230 | const uint16_t ch_im_in, |
---|
231 | const q15_t * wt, |
---|
232 | const uint16_t ch_im_out, |
---|
233 | const uint16_t dim_kernel, |
---|
234 | const uint16_t padding, |
---|
235 | const uint16_t stride, |
---|
236 | const q15_t * bias, |
---|
237 | const uint16_t bias_shift, |
---|
238 | const uint16_t out_shift, |
---|
239 | q15_t * Im_out, |
---|
240 | const uint16_t dim_im_out, |
---|
241 | q15_t * bufferA, |
---|
242 | q7_t * bufferB); |
---|
243 | |
---|
244 | /** |
---|
245 | * @brief Fast Q7 convolution function |
---|
246 | * @param[in] Im_in pointer to input tensor |
---|
247 | * @param[in] dim_im_in input tensor dimention |
---|
248 | * @param[in] ch_im_in number of input tensor channels |
---|
249 | * @param[in] wt pointer to kernel weights |
---|
250 | * @param[in] ch_im_out number of filters, i.e., output tensor channels |
---|
251 | * @param[in] dim_kernel filter kernel size |
---|
252 | * @param[in] padding padding sizes |
---|
253 | * @param[in] stride convolution stride |
---|
254 | * @param[in] bias pointer to bias |
---|
255 | * @param[in] bias_shift amount of left-shift for bias |
---|
256 | * @param[in] out_shift amount of right-shift for output |
---|
257 | * @param[in,out] Im_out pointer to output tensor |
---|
258 | * @param[in] dim_im_out output tensor dimension |
---|
259 | * @param[in,out] bufferA pointer to buffer space for input |
---|
260 | * @param[in,out] bufferB pointer to buffer space for output |
---|
261 | * @return The function returns either |
---|
262 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
---|
263 | * |
---|
264 | * This function is the version with full list of optimization tricks, but with |
---|
265 | * some contraints: |
---|
266 | * ch_im_in is multiple of 4 |
---|
267 | * ch_im_out is multiple of 2 |
---|
268 | */ |
---|
269 | |
---|
270 | arm_status arm_convolve_HWC_q7_fast(const q7_t * Im_in, |
---|
271 | const uint16_t dim_im_in, |
---|
272 | const uint16_t ch_im_in, |
---|
273 | const q7_t * wt, |
---|
274 | const uint16_t ch_im_out, |
---|
275 | const uint16_t dim_kernel, |
---|
276 | const uint16_t padding, |
---|
277 | const uint16_t stride, |
---|
278 | const q7_t * bias, |
---|
279 | const uint16_t bias_shift, |
---|
280 | const uint16_t out_shift, |
---|
281 | q7_t * Im_out, |
---|
282 | const uint16_t dim_im_out, |
---|
283 | q15_t * bufferA, |
---|
284 | q7_t * bufferB); |
---|
285 | |
---|
286 | /** |
---|
287 | * @brief Fast Q7 convolution function (non-sqaure shape) |
---|
288 | * @param[in] Im_in pointer to input tensor |
---|
289 | * @param[in] dim_im_in_x input tensor dimention x |
---|
290 | * @param[in] dim_im_in_y input tensor dimention y |
---|
291 | * @param[in] ch_im_in number of input tensor channels |
---|
292 | * @param[in] wt pointer to kernel weights |
---|
293 | * @param[in] ch_im_out number of filters, i.e., output tensor channels |
---|
294 | * @param[in] dim_kernel_x filter kernel size x |
---|
295 | * @param[in] dim_kernel_y filter kernel size y |
---|
296 | * @param[in] padding_x padding size x |
---|
297 | * @param[in] padding_y padding size y |
---|
298 | * @param[in] stride_x convolution stride x |
---|
299 | * @param[in] stride_y convolution stride y |
---|
300 | * @param[in] bias pointer to bias |
---|
301 | * @param[in] bias_shift amount of left-shift for bias |
---|
302 | * @param[in] out_shift amount of right-shift for output |
---|
303 | * @param[in,out] Im_out pointer to output tensor |
---|
304 | * @param[in] dim_im_out_x output tensor dimension x |
---|
305 | * @param[in] dim_im_out_y output tensor dimension y |
---|
306 | * @param[in,out] bufferA pointer to buffer space for input |
---|
307 | * @param[in,out] bufferB pointer to buffer space for output |
---|
308 | * @return The function returns either |
---|
309 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
---|
310 | * |
---|
311 | * This function is the version with full list of optimization tricks, but with |
---|
312 | * some contraints: |
---|
313 | * ch_im_in is multiple of 4 |
---|
314 | * ch_im_out is multiple of 2 |
---|
315 | */ |
---|
316 | |
---|
317 | arm_status arm_convolve_HWC_q7_fast_nonsquare(const q7_t * Im_in, |
---|
318 | const uint16_t dim_im_in_x, |
---|
319 | const uint16_t dim_im_in_y, |
---|
320 | const uint16_t ch_im_in, |
---|
321 | const q7_t * wt, |
---|
322 | const uint16_t ch_im_out, |
---|
323 | const uint16_t dim_kernel_x, |
---|
324 | const uint16_t dim_kernel_y, |
---|
325 | const uint16_t padding_x, |
---|
326 | const uint16_t padding_y, |
---|
327 | const uint16_t stride_x, |
---|
328 | const uint16_t stride_y, |
---|
329 | const q7_t * bias, |
---|
330 | const uint16_t bias_shift, |
---|
331 | const uint16_t out_shift, |
---|
332 | q7_t * Im_out, |
---|
333 | const uint16_t dim_im_out_x, |
---|
334 | const uint16_t dim_im_out_y, |
---|
335 | q15_t * bufferA, |
---|
336 | q7_t * bufferB); |
---|
337 | |
---|
338 | /** |
---|
339 | * @brief Fast Q7 version of 1x1 convolution (non-sqaure shape) |
---|
340 | * @param[in] Im_in pointer to input tensor |
---|
341 | * @param[in] dim_im_in_x input tensor dimention x |
---|
342 | * @param[in] dim_im_in_y input tensor dimention y |
---|
343 | * @param[in] ch_im_in number of input tensor channels |
---|
344 | * @param[in] wt pointer to kernel weights |
---|
345 | * @param[in] ch_im_out number of filters, i.e., output tensor channels |
---|
346 | * @param[in] dim_kernel_x filter kernel size x |
---|
347 | * @param[in] dim_kernel_y filter kernel size y |
---|
348 | * @param[in] padding_x padding size x |
---|
349 | * @param[in] padding_y padding size y |
---|
350 | * @param[in] stride_x convolution stride x |
---|
351 | * @param[in] stride_y convolution stride y |
---|
352 | * @param[in] bias pointer to bias |
---|
353 | * @param[in] bias_shift amount of left-shift for bias |
---|
354 | * @param[in] out_shift amount of right-shift for output |
---|
355 | * @param[in,out] Im_out pointer to output tensor |
---|
356 | * @param[in] dim_im_out_x output tensor dimension x |
---|
357 | * @param[in] dim_im_out_y output tensor dimension y |
---|
358 | * @param[in,out] bufferA pointer to buffer space for input |
---|
359 | * @param[in,out] bufferB pointer to buffer space for output |
---|
360 | * @return The function returns either |
---|
361 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
---|
362 | * |
---|
363 | * This function implement convolution with 1x1 kernel size (i.e., dim_kernel_x=1 |
---|
364 | * and dim_kernel_y=1). It can be used for |
---|
365 | * second half of MobileNets after depthwise separable convolution. |
---|
366 | * |
---|
367 | * This function is the version with full list of optimization tricks, but with |
---|
368 | * some contraints: |
---|
369 | * ch_im_in is multiple of 4 |
---|
370 | * ch_im_out is multiple of 2 |
---|
371 | */ |
---|
372 | arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t * Im_in, |
---|
373 | const uint16_t dim_im_in_x, |
---|
374 | const uint16_t dim_im_in_y, |
---|
375 | const uint16_t ch_im_in, |
---|
376 | const q7_t * wt, |
---|
377 | const uint16_t ch_im_out, |
---|
378 | const uint16_t dim_kernel_x, |
---|
379 | const uint16_t dim_kernel_y, |
---|
380 | const uint16_t padding_x, |
---|
381 | const uint16_t padding_y, |
---|
382 | const uint16_t stride_x, |
---|
383 | const uint16_t stride_y, |
---|
384 | const q7_t * bias, |
---|
385 | const uint16_t bias_shift, |
---|
386 | const uint16_t out_shift, |
---|
387 | q7_t * Im_out, |
---|
388 | const uint16_t dim_im_out_x, |
---|
389 | const uint16_t dim_im_out_y, |
---|
390 | q15_t * bufferA, |
---|
391 | q7_t * bufferB); |
---|
392 | |
---|
393 | /** |
---|
394 | * @brief Q7 version of convolution for RGB image |
---|
395 | * @param[in] Im_in pointer to input tensor |
---|
396 | * @param[in] dim_im_in input tensor dimention |
---|
397 | * @param[in] ch_im_in number of input tensor channels |
---|
398 | * @param[in] wt pointer to kernel weights |
---|
399 | * @param[in] ch_im_out number of filters, i.e., output tensor channels |
---|
400 | * @param[in] dim_kernel filter kernel size |
---|
401 | * @param[in] padding padding sizes |
---|
402 | * @param[in] stride convolution stride |
---|
403 | * @param[in] bias pointer to bias |
---|
404 | * @param[in] bias_shift amount of left-shift for bias |
---|
405 | * @param[in] out_shift amount of right-shift for output |
---|
406 | * @param[in,out] Im_out pointer to output tensor |
---|
407 | * @param[in] dim_im_out output tensor dimension |
---|
408 | * @param[in,out] bufferA pointer to buffer space for input |
---|
409 | * @param[in,out] bufferB pointer to buffer space for output |
---|
410 | * @return The function returns either |
---|
411 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
---|
412 | * |
---|
413 | * This kernel is written exclusively for convolution with ch_im_in |
---|
414 | * equals 3. This applies on the first layer of CNNs which has input |
---|
415 | * image with RGB format. |
---|
416 | */ |
---|
417 | |
---|
418 | arm_status arm_convolve_HWC_q7_RGB(const q7_t * Im_in, |
---|
419 | const uint16_t dim_im_in, |
---|
420 | const uint16_t ch_im_in, |
---|
421 | const q7_t * wt, |
---|
422 | const uint16_t ch_im_out, |
---|
423 | const uint16_t dim_kernel, |
---|
424 | const uint16_t padding, |
---|
425 | const uint16_t stride, |
---|
426 | const q7_t * bias, |
---|
427 | const uint16_t bias_shift, |
---|
428 | const uint16_t out_shift, |
---|
429 | q7_t * Im_out, |
---|
430 | const uint16_t dim_im_out, |
---|
431 | q15_t * bufferA, |
---|
432 | q7_t * bufferB); |
---|
433 | |
---|
434 | /** |
---|
435 | * @brief Fast Q15 convolution function |
---|
436 | * @param[in] Im_in pointer to input tensor |
---|
437 | * @param[in] dim_im_in input tensor dimention |
---|
438 | * @param[in] ch_im_in number of input tensor channels |
---|
439 | * @param[in] wt pointer to kernel weights |
---|
440 | * @param[in] ch_im_out number of filters, i.e., output tensor channels |
---|
441 | * @param[in] dim_kernel filter kernel size |
---|
442 | * @param[in] padding padding sizes |
---|
443 | * @param[in] stride convolution stride |
---|
444 | * @param[in] bias pointer to bias |
---|
445 | * @param[in] bias_shift amount of left-shift for bias |
---|
446 | * @param[in] out_shift amount of right-shift for output |
---|
447 | * @param[in,out] Im_out pointer to output tensor |
---|
448 | * @param[in] dim_im_out output tensor dimension |
---|
449 | * @param[in,out] bufferA pointer to buffer space for input |
---|
450 | * @param[in,out] bufferB pointer to buffer space for output |
---|
451 | * @return The function returns either |
---|
452 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
---|
453 | * |
---|
454 | * This function is the version with full list of optimization tricks, but with |
---|
455 | * some contraints: |
---|
456 | * ch_im_in is multiple of 2 |
---|
457 | * ch_im_out is multiple of 2 |
---|
458 | */ |
---|
459 | |
---|
460 | arm_status arm_convolve_HWC_q15_fast(const q15_t * Im_in, |
---|
461 | const uint16_t dim_im_in, |
---|
462 | const uint16_t ch_im_in, |
---|
463 | const q15_t * wt, |
---|
464 | const uint16_t ch_im_out, |
---|
465 | const uint16_t dim_kernel, |
---|
466 | const uint16_t padding, |
---|
467 | const uint16_t stride, |
---|
468 | const q15_t * bias, |
---|
469 | const uint16_t bias_shift, |
---|
470 | const uint16_t out_shift, |
---|
471 | q15_t * Im_out, |
---|
472 | const uint16_t dim_im_out, |
---|
473 | q15_t * bufferA, |
---|
474 | q7_t * bufferB); |
---|
475 | |
---|
476 | /** |
---|
477 | * @brief Fast Q15 convolution function (non-sqaure shape) |
---|
478 | * @param[in] Im_in pointer to input tensor |
---|
479 | * @param[in] dim_im_in_x input tensor dimention x |
---|
480 | * @param[in] dim_im_in_y input tensor dimention y |
---|
481 | * @param[in] ch_im_in number of input tensor channels |
---|
482 | * @param[in] wt pointer to kernel weights |
---|
483 | * @param[in] ch_im_out number of filters, i.e., output tensor channels |
---|
484 | * @param[in] dim_kernel_x filter kernel size x |
---|
485 | * @param[in] dim_kernel_y filter kernel size y |
---|
486 | * @param[in] padding_x padding size x |
---|
487 | * @param[in] padding_y padding size y |
---|
488 | * @param[in] stride_x convolution stride x |
---|
489 | * @param[in] stride_y convolution stride y |
---|
490 | * @param[in] bias pointer to bias |
---|
491 | * @param[in] bias_shift amount of left-shift for bias |
---|
492 | * @param[in] out_shift amount of right-shift for output |
---|
493 | * @param[in,out] Im_out pointer to output tensor |
---|
494 | * @param[in] dim_im_out_x output tensor dimension x |
---|
495 | * @param[in] dim_im_out_y output tensor dimension y |
---|
496 | * @param[in,out] bufferA pointer to buffer space for input |
---|
497 | * @param[in,out] bufferB pointer to buffer space for output |
---|
498 | * @return The function returns either |
---|
499 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
---|
500 | * |
---|
501 | * @details |
---|
502 | * |
---|
503 | * <b>Buffer size:</b> |
---|
504 | * |
---|
505 | * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel |
---|
506 | * |
---|
507 | * bufferB size: 0 |
---|
508 | * |
---|
509 | * <b>Input dimension constraints:</b> |
---|
510 | * |
---|
511 | * ch_im_in is multiple of 2 |
---|
512 | * |
---|
513 | * ch_im_out is multipe of 2 |
---|
514 | * |
---|
515 | */ |
---|
516 | |
---|
517 | arm_status |
---|
518 | arm_convolve_HWC_q15_fast_nonsquare(const q15_t * Im_in, |
---|
519 | const uint16_t dim_im_in_x, |
---|
520 | const uint16_t dim_im_in_y, |
---|
521 | const uint16_t ch_im_in, |
---|
522 | const q15_t * wt, |
---|
523 | const uint16_t ch_im_out, |
---|
524 | const uint16_t dim_kernel_x, |
---|
525 | const uint16_t dim_kernel_y, |
---|
526 | const uint16_t padding_x, |
---|
527 | const uint16_t padding_y, |
---|
528 | const uint16_t stride_x, |
---|
529 | const uint16_t stride_y, |
---|
530 | const q15_t * bias, |
---|
531 | const uint16_t bias_shift, |
---|
532 | const uint16_t out_shift, |
---|
533 | q15_t * Im_out, |
---|
534 | const uint16_t dim_im_out_x, |
---|
535 | const uint16_t dim_im_out_y, |
---|
536 | q15_t * bufferA, |
---|
537 | q7_t * bufferB); |
---|
538 | |
---|
539 | /** |
---|
540 | * @brief Q7 depthwise separable convolution function |
---|
541 | * @param[in] Im_in pointer to input tensor |
---|
542 | * @param[in] dim_im_in input tensor dimention |
---|
543 | * @param[in] ch_im_in number of input tensor channels |
---|
544 | * @param[in] wt pointer to kernel weights |
---|
545 | * @param[in] ch_im_out number of filters, i.e., output tensor channels |
---|
546 | * @param[in] dim_kernel filter kernel size |
---|
547 | * @param[in] padding padding sizes |
---|
548 | * @param[in] stride convolution stride |
---|
549 | * @param[in] bias pointer to bias |
---|
550 | * @param[in] bias_shift amount of left-shift for bias |
---|
551 | * @param[in] out_shift amount of right-shift for output |
---|
552 | * @param[in,out] Im_out pointer to output tensor |
---|
553 | * @param[in] dim_im_out output tensor dimension |
---|
554 | * @param[in,out] bufferA pointer to buffer space for input |
---|
555 | * @param[in,out] bufferB pointer to buffer space for output |
---|
556 | * @return The function returns either |
---|
557 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
---|
558 | * |
---|
559 | * This function is the version with full list of optimization tricks, but with |
---|
560 | * some contraints: |
---|
561 | * ch_im_in is multiple of 2 |
---|
562 | * ch_im_out is multiple of 2 |
---|
563 | */ |
---|
564 | |
---|
565 | arm_status arm_depthwise_separable_conv_HWC_q7(const q7_t * Im_in, |
---|
566 | const uint16_t dim_im_in, |
---|
567 | const uint16_t ch_im_in, |
---|
568 | const q7_t * wt, |
---|
569 | const uint16_t ch_im_out, |
---|
570 | const uint16_t dim_kernel, |
---|
571 | const uint16_t padding, |
---|
572 | const uint16_t stride, |
---|
573 | const q7_t * bias, |
---|
574 | const uint16_t bias_shift, |
---|
575 | const uint16_t out_shift, |
---|
576 | q7_t * Im_out, |
---|
577 | const uint16_t dim_im_out, |
---|
578 | q15_t * bufferA, |
---|
579 | q7_t * bufferB); |
---|
580 | |
---|
581 | /** |
---|
582 | * @brief Q7 depthwise separable convolution function (non-square shape) |
---|
583 | * @param[in] Im_in pointer to input tensor |
---|
584 | * @param[in] dim_im_in_x input tensor dimention x |
---|
585 | * @param[in] dim_im_in_y input tensor dimention y |
---|
586 | * @param[in] ch_im_in number of input tensor channels |
---|
587 | * @param[in] wt pointer to kernel weights |
---|
588 | * @param[in] ch_im_out number of filters, i.e., output tensor channels |
---|
589 | * @param[in] dim_kernel_x filter kernel size x |
---|
590 | * @param[in] dim_kernel_y filter kernel size y |
---|
591 | * @param[in] padding_x padding sizes x |
---|
592 | * @param[in] padding_y padding sizes y |
---|
593 | * @param[in] stride_x convolution stride x |
---|
594 | * @param[in] stride_y convolution stride y |
---|
595 | * @param[in] bias pointer to bias |
---|
596 | * @param[in] bias_shift amount of left-shift for bias |
---|
597 | * @param[in] out_shift amount of right-shift for output |
---|
598 | * @param[in,out] Im_out pointer to output tensor |
---|
599 | * @param[in] dim_im_out_x output tensor dimension x |
---|
600 | * @param[in] dim_im_out_y output tensor dimension y |
---|
601 | * @param[in,out] bufferA pointer to buffer space for input |
---|
602 | * @param[in,out] bufferB pointer to buffer space for output |
---|
603 | * @return The function returns either |
---|
604 | * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. |
---|
605 | * |
---|
606 | * This function is the version with full list of optimization tricks, but with |
---|
607 | * some contraints: |
---|
608 | * ch_im_in is multiple of 2 |
---|
609 | * ch_im_out is multiple of 2 |
---|
610 | */ |
---|
611 | arm_status arm_depthwise_separable_conv_HWC_q7_nonsquare(const q7_t * Im_in, |
---|
612 | const uint16_t dim_im_in_x, |
---|
613 | const uint16_t dim_im_in_y, |
---|
614 | const uint16_t ch_im_in, |
---|
615 | const q7_t * wt, |
---|
616 | const uint16_t ch_im_out, |
---|
617 | const uint16_t dim_kernel_x, |
---|
618 | const uint16_t dim_kernel_y, |
---|
619 | const uint16_t padding_x, |
---|
620 | const uint16_t padding_y, |
---|
621 | const uint16_t stride_x, |
---|
622 | const uint16_t stride_y, |
---|
623 | const q7_t * bias, |
---|
624 | const uint16_t bias_shift, |
---|
625 | const uint16_t out_shift, |
---|
626 | q7_t * Im_out, |
---|
627 | const uint16_t dim_im_out_x, |
---|
628 | const uint16_t dim_im_out_y, |
---|
629 | q15_t * bufferA, |
---|
630 | q7_t * bufferB); |
---|
631 | |
---|
632 | |
---|
633 | /** |
---|
634 | * @defgroup FC Fully-connected Layer Functions |
---|
635 | * |
---|
636 | * Perform fully-connected layer |
---|
637 | * |
---|
638 | * Fully-connected layer is basically a matrix-vector multiplication |
---|
639 | * with bias. The matrix is the weights and the input/output vectors |
---|
640 | * are the activation values. Supported {weight, activation} precisions |
---|
641 | * include {8-bit, 8-bit}, {16-bit, 16-bit}, and {8-bit, 16-bit}. |
---|
642 | * |
---|
643 | * Here we have two types of kernel functions. The basic function |
---|
644 | * implements the function using regular GEMV approach. The opt functions |
---|
645 | * operates with weights in interleaved formats. |
---|
646 | * |
---|
647 | */ |
---|
648 | |
---|
649 | /** |
---|
650 | * @brief Q7 basic fully-connected layer function |
---|
651 | * @param[in] pV pointer to input vector |
---|
652 | * @param[in] pM pointer to matrix weights |
---|
653 | * @param[in] dim_vec length of the vector |
---|
654 | * @param[in] num_of_rows number of rows in weight matrix |
---|
655 | * @param[in] bias_shift amount of left-shift for bias |
---|
656 | * @param[in] out_shift amount of right-shift for output |
---|
657 | * @param[in] bias pointer to bias |
---|
658 | * @param[in,out] pOut pointer to output vector |
---|
659 | * @param[in,out] vec_buffer pointer to buffer space for input |
---|
660 | * @return The function returns <code>ARM_MATH_SUCCESS</code> |
---|
661 | * |
---|
662 | */ |
---|
663 | |
---|
664 | arm_status arm_fully_connected_q7(const q7_t * pV, |
---|
665 | const q7_t * pM, |
---|
666 | const uint16_t dim_vec, |
---|
667 | const uint16_t num_of_rows, |
---|
668 | const uint16_t bias_shift, |
---|
669 | const uint16_t out_shift, |
---|
670 | const q7_t * bias, |
---|
671 | q7_t * pOut, |
---|
672 | q15_t * vec_buffer); |
---|
673 | |
---|
674 | /** |
---|
675 | * @brief Q7 opt fully-connected layer function |
---|
676 | * @param[in] pV pointer to input vector |
---|
677 | * @param[in] pM pointer to matrix weights |
---|
678 | * @param[in] dim_vec length of the vector |
---|
679 | * @param[in] num_of_rows number of rows in weight matrix |
---|
680 | * @param[in] bias_shift amount of left-shift for bias |
---|
681 | * @param[in] out_shift amount of right-shift for output |
---|
682 | * @param[in] bias pointer to bias |
---|
683 | * @param[in,out] pOut pointer to output vector |
---|
684 | * @param[in,out] vec_buffer pointer to buffer space for input |
---|
685 | * @return The function returns <code>ARM_MATH_SUCCESS</code> |
---|
686 | * |
---|
687 | */ |
---|
688 | |
---|
689 | arm_status arm_fully_connected_q7_opt(const q7_t * pV, |
---|
690 | const q7_t * pM, |
---|
691 | const uint16_t dim_vec, |
---|
692 | const uint16_t num_of_rows, |
---|
693 | const uint16_t bias_shift, |
---|
694 | const uint16_t out_shift, |
---|
695 | const q7_t * bias, |
---|
696 | q7_t * pOut, |
---|
697 | q15_t * vec_buffer); |
---|
698 | |
---|
699 | /** |
---|
700 | * @brief Q15 basic fully-connected layer function |
---|
701 | * @param[in] pV pointer to input vector |
---|
702 | * @param[in] pM pointer to matrix weights |
---|
703 | * @param[in] dim_vec length of the vector |
---|
704 | * @param[in] num_of_rows number of rows in weight matrix |
---|
705 | * @param[in] bias_shift amount of left-shift for bias |
---|
706 | * @param[in] out_shift amount of right-shift for output |
---|
707 | * @param[in] bias pointer to bias |
---|
708 | * @param[in,out] pOut pointer to output vector |
---|
709 | * @param[in,out] vec_buffer pointer to buffer space for input |
---|
710 | * @return The function returns <code>ARM_MATH_SUCCESS</code> |
---|
711 | * |
---|
712 | */ |
---|
713 | |
---|
714 | arm_status arm_fully_connected_q15(const q15_t * pV, |
---|
715 | const q15_t * pM, |
---|
716 | const uint16_t dim_vec, |
---|
717 | const uint16_t num_of_rows, |
---|
718 | const uint16_t bias_shift, |
---|
719 | const uint16_t out_shift, |
---|
720 | const q15_t * bias, |
---|
721 | q15_t * pOut, |
---|
722 | q15_t * vec_buffer); |
---|
723 | |
---|
724 | /** |
---|
725 | * @brief Q15 opt fully-connected layer function |
---|
726 | * @param[in] pV pointer to input vector |
---|
727 | * @param[in] pM pointer to matrix weights |
---|
728 | * @param[in] dim_vec length of the vector |
---|
729 | * @param[in] num_of_rows number of rows in weight matrix |
---|
730 | * @param[in] bias_shift amount of left-shift for bias |
---|
731 | * @param[in] out_shift amount of right-shift for output |
---|
732 | * @param[in] bias pointer to bias |
---|
733 | * @param[in,out] pOut pointer to output vector |
---|
734 | * @param[in,out] vec_buffer pointer to buffer space for input |
---|
735 | * @return The function returns <code>ARM_MATH_SUCCESS</code> |
---|
736 | * |
---|
737 | */ |
---|
738 | |
---|
739 | arm_status arm_fully_connected_q15_opt(const q15_t * pV, |
---|
740 | const q15_t * pM, |
---|
741 | const uint16_t dim_vec, |
---|
742 | const uint16_t num_of_rows, |
---|
743 | const uint16_t bias_shift, |
---|
744 | const uint16_t out_shift, |
---|
745 | const q15_t * bias, |
---|
746 | q15_t * pOut, |
---|
747 | q15_t * vec_buffer); |
---|
748 | |
---|
749 | /** |
---|
750 | * @brief Mixed Q15-Q7 fully-connected layer function |
---|
751 | * @param[in] pV pointer to input vector |
---|
752 | * @param[in] pM pointer to matrix weights |
---|
753 | * @param[in] dim_vec length of the vector |
---|
754 | * @param[in] num_of_rows number of rows in weight matrix |
---|
755 | * @param[in] bias_shift amount of left-shift for bias |
---|
756 | * @param[in] out_shift amount of right-shift for output |
---|
757 | * @param[in] bias pointer to bias |
---|
758 | * @param[in,out] pOut pointer to output vector |
---|
759 | * @param[in,out] vec_buffer pointer to buffer space for input |
---|
760 | * @return The function returns <code>ARM_MATH_SUCCESS</code> |
---|
761 | * |
---|
762 | */ |
---|
763 | |
---|
764 | arm_status arm_fully_connected_mat_q7_vec_q15(const q15_t * pV, |
---|
765 | const q7_t * pM, |
---|
766 | const uint16_t dim_vec, |
---|
767 | const uint16_t num_of_rows, |
---|
768 | const uint16_t bias_shift, |
---|
769 | const uint16_t out_shift, |
---|
770 | const q7_t * bias, |
---|
771 | q15_t * pOut, |
---|
772 | q15_t * vec_buffer); |
---|
773 | |
---|
774 | /** |
---|
775 | * @brief Mixed Q15-Q7 opt fully-connected layer function |
---|
776 | * @param[in] pV pointer to input vector |
---|
777 | * @param[in] pM pointer to matrix weights |
---|
778 | * @param[in] dim_vec length of the vector |
---|
779 | * @param[in] num_of_rows number of rows in weight matrix |
---|
780 | * @param[in] bias_shift amount of left-shift for bias |
---|
781 | * @param[in] out_shift amount of right-shift for output |
---|
782 | * @param[in] bias pointer to bias |
---|
783 | * @param[in,out] pOut pointer to output vector |
---|
784 | * @param[in,out] vec_buffer pointer to buffer space for input |
---|
785 | * @return The function returns <code>ARM_MATH_SUCCESS</code> |
---|
786 | * |
---|
787 | */ |
---|
788 | |
---|
789 | arm_status arm_fully_connected_mat_q7_vec_q15_opt(const q15_t * pV, |
---|
790 | const q7_t * pM, |
---|
791 | const uint16_t dim_vec, |
---|
792 | const uint16_t num_of_rows, |
---|
793 | const uint16_t bias_shift, |
---|
794 | const uint16_t out_shift, |
---|
795 | const q7_t * bias, |
---|
796 | q15_t * pOut, |
---|
797 | q15_t * vec_buffer); |
---|
798 | |
---|
799 | /** |
---|
800 | * @brief Matrix-Multiplication Kernels for Convolution |
---|
801 | * |
---|
802 | * These functions are used within convolution layer functions for |
---|
803 | * matrix multiplication. |
---|
804 | * |
---|
805 | * The implementation is similar to CMSIS-DSP arm_mat_mult functions |
---|
806 | * with one Q7 and one Q15 operands. The Q15 operand is the im2col |
---|
807 | * output which is always with 2 columns. |
---|
808 | * |
---|
809 | */ |
---|
810 | |
---|
811 | /** |
---|
812 | * @brief Matrix-multiplication function for convolution |
---|
813 | * @param[in] pA pointer to operand A |
---|
814 | * @param[in] pInBuffer pointer to operand B, always conssists of 2 vectors |
---|
815 | * @param[in] ch_im_out numRow of A |
---|
816 | * @param[in] numCol_A numCol of A |
---|
817 | * @param[in] bias_shift amount of left-shift for bias |
---|
818 | * @param[in] out_shift amount of right-shift for output |
---|
819 | * @param[in] bias the bias |
---|
820 | * @param[in,out] pOut pointer to output |
---|
821 | * @return The function returns the incremented output pointer |
---|
822 | */ |
---|
823 | |
---|
824 | q7_t *arm_nn_mat_mult_kernel_q7_q15(const q7_t * pA, |
---|
825 | const q15_t * pInBuffer, |
---|
826 | const uint16_t ch_im_out, |
---|
827 | const uint16_t numCol_A, |
---|
828 | const uint16_t bias_shift, |
---|
829 | const uint16_t out_shift, |
---|
830 | const q7_t * bias, |
---|
831 | q7_t * pOut); |
---|
832 | |
---|
833 | /** |
---|
834 | * @brief Matrix-multiplication function for convolution with reordered columns |
---|
835 | * @param[in] pA pointer to operand A |
---|
836 | * @param[in] pInBuffer pointer to operand B, always conssists of 2 vectors |
---|
837 | * @param[in] ch_im_out numRow of A |
---|
838 | * @param[in] numCol_A numCol of A |
---|
839 | * @param[in] bias_shift amount of left-shift for bias |
---|
840 | * @param[in] out_shift amount of right-shift for output |
---|
841 | * @param[in] bias the bias |
---|
842 | * @param[in,out] pOut pointer to output |
---|
843 | * @return The function returns the incremented output pointer |
---|
844 | */ |
---|
845 | |
---|
846 | q7_t *arm_nn_mat_mult_kernel_q7_q15_reordered(const q7_t * pA, |
---|
847 | const q15_t * pInBuffer, |
---|
848 | const uint16_t ch_im_out, |
---|
849 | const uint16_t numCol_A, |
---|
850 | const uint16_t bias_shift, |
---|
851 | const uint16_t out_shift, |
---|
852 | const q7_t * bias, |
---|
853 | q7_t * pOut); |
---|
854 | |
---|
855 | #ifdef __cplusplus |
---|
856 | } |
---|
857 | #endif |
---|
858 | |
---|
859 | /* |
---|
860 | * Other functions |
---|
861 | * These layers are typically not timing critical |
---|
862 | * Basic implementation is supported here |
---|
863 | */ |
---|
864 | |
---|
865 | #ifdef __cplusplus |
---|
866 | extern "C" |
---|
867 | { |
---|
868 | #endif |
---|
869 | |
---|
870 | /** |
---|
871 | * @defgroup Acti Neural Network Activation Functions |
---|
872 | * |
---|
873 | * Perform activation layers, including ReLU (Rectified Linear Unit), |
---|
874 | * sigmoid and tanh |
---|
875 | * |
---|
876 | */ |
---|
877 | |
---|
878 | /** |
---|
879 | * @brief Q7 RELU function |
---|
880 | * @param[in,out] data pointer to input |
---|
881 | * @param[in] size number of elements |
---|
882 | * @return none. |
---|
883 | */ |
---|
884 | |
---|
885 | void arm_relu_q7(q7_t * data, uint16_t size); |
---|
886 | |
---|
887 | /** |
---|
888 | * @brief Q15 RELU function |
---|
889 | * @param[in,out] data pointer to input |
---|
890 | * @param[in] size number of elements |
---|
891 | * @return none. |
---|
892 | */ |
---|
893 | |
---|
894 | void arm_relu_q15(q15_t * data, uint16_t size); |
---|
895 | |
---|
896 | /** |
---|
897 | * @brief Q7 neural network activation function using direct table look-up |
---|
898 | * @param[in,out] data pointer to input |
---|
899 | * @param[in] size number of elements |
---|
900 | * @param[in] int_width bit-width of the integer part, assume to be smaller than 3 |
---|
901 | * @param[in] type type of activation functions |
---|
902 | * @return none. |
---|
903 | */ |
---|
904 | |
---|
905 | void arm_nn_activations_direct_q7(q7_t * data, uint16_t size, uint16_t int_width, |
---|
906 | arm_nn_activation_type type); |
---|
907 | |
---|
908 | /** |
---|
909 | * @brief Q15 neural network activation function using direct table look-up |
---|
910 | * @param[in,out] data pointer to input |
---|
911 | * @param[in] size number of elements |
---|
912 | * @param[in] int_width bit-width of the integer part, assume to be smaller than 3 |
---|
913 | * @param[in] type type of activation functions |
---|
914 | * @return none. |
---|
915 | */ |
---|
916 | |
---|
917 | void arm_nn_activations_direct_q15(q15_t * data, uint16_t size, uint16_t int_width, |
---|
918 | arm_nn_activation_type type); |
---|
919 | |
---|
920 | /** |
---|
921 | * @defgroup Pooling Neural Network Pooling Functions |
---|
922 | * |
---|
923 | * Perform pooling functions, including max pooling and average pooling |
---|
924 | * |
---|
925 | */ |
---|
926 | |
---|
927 | /** |
---|
928 | * @brief Q7 max pooling function |
---|
929 | * @param[in] Im_in pointer to input tensor |
---|
930 | * @param[in] dim_im_in input tensor dimention |
---|
931 | * @param[in] ch_im_in number of input tensor channels |
---|
932 | * @param[in] dim_kernel filter kernel size |
---|
933 | * @param[in] padding padding sizes |
---|
934 | * @param[in] stride convolution stride |
---|
935 | * @param[in] dim_im_out output tensor dimension |
---|
936 | * @param[in,out] bufferA pointer to buffer space for input |
---|
937 | * @param[in,out] Im_out pointer to output tensor |
---|
938 | * @return none. |
---|
939 | * |
---|
940 | */ |
---|
941 | |
---|
942 | void arm_maxpool_q7_HWC(q7_t * Im_in, |
---|
943 | const uint16_t dim_im_in, |
---|
944 | const uint16_t ch_im_in, |
---|
945 | const uint16_t dim_kernel, |
---|
946 | const uint16_t padding, |
---|
947 | const uint16_t stride, |
---|
948 | const uint16_t dim_im_out, |
---|
949 | q7_t * bufferA, |
---|
950 | q7_t * Im_out); |
---|
951 | |
---|
952 | /** |
---|
953 | * @brief Q7 average pooling function |
---|
954 | * @param[in] Im_in pointer to input tensor |
---|
955 | * @param[in] dim_im_in input tensor dimention |
---|
956 | * @param[in] ch_im_in number of input tensor channels |
---|
957 | * @param[in] dim_kernel filter kernel size |
---|
958 | * @param[in] padding padding sizes |
---|
959 | * @param[in] stride convolution stride |
---|
960 | * @param[in] dim_im_out output tensor dimension |
---|
961 | * @param[in,out] bufferA pointer to buffer space for input |
---|
962 | * @param[in,out] Im_out pointer to output tensor |
---|
963 | * @return none. |
---|
964 | * |
---|
965 | */ |
---|
966 | |
---|
967 | void arm_avepool_q7_HWC(q7_t * Im_in, |
---|
968 | const uint16_t dim_im_in, |
---|
969 | const uint16_t ch_im_in, |
---|
970 | const uint16_t dim_kernel, |
---|
971 | const uint16_t padding, |
---|
972 | const uint16_t stride, |
---|
973 | const uint16_t dim_im_out, |
---|
974 | q7_t * bufferA, |
---|
975 | q7_t * Im_out); |
---|
976 | |
---|
977 | /** |
---|
978 | * @defgroup Softmax Softmax Functions |
---|
979 | * |
---|
980 | * EXP(2) based softmax function |
---|
981 | * |
---|
982 | */ |
---|
983 | |
---|
984 | /** |
---|
985 | * @brief Q7 softmax function |
---|
986 | * @param[in] vec_in pointer to input vector |
---|
987 | * @param[in] dim_vec input vector dimention |
---|
988 | * @param[out] p_out pointer to output vector |
---|
989 | * @return none. |
---|
990 | * |
---|
991 | */ |
---|
992 | |
---|
993 | void arm_softmax_q7(const q7_t * vec_in, const uint16_t dim_vec, q7_t * p_out); |
---|
994 | |
---|
995 | /** |
---|
996 | * @brief Q15 softmax function |
---|
997 | * @param[in] vec_in pointer to input vector |
---|
998 | * @param[in] dim_vec input vector dimention |
---|
999 | * @param[out] p_out pointer to output vector |
---|
1000 | * @return none. |
---|
1001 | * |
---|
1002 | */ |
---|
1003 | |
---|
1004 | void arm_softmax_q15(const q15_t * vec_in, const uint16_t dim_vec, q15_t * p_out); |
---|
1005 | |
---|
1006 | /** |
---|
1007 | * @brief uint8 depthwise convolution function with asymmetric quantization for even number of channel multiplier |
---|
1008 | * and input channels. Unless specified otherwise, arguments are mandatory. |
---|
1009 | * |
---|
1010 | * @param[in] input Pointer to input tensor |
---|
1011 | * @param[in] input_x Width of input tensor |
---|
1012 | * @param[in] input_y Height of input tensor |
---|
1013 | * @param[in] input_ch Channels in input tensor |
---|
1014 | * @param[in] kernel Pointer to kernel weights |
---|
1015 | * @param[in] kernel_x Width of kernel |
---|
1016 | * @param[in] kernel_y Height of kernel |
---|
1017 | * @param[in] ch_mult Number of channel multiplier |
---|
1018 | * @param[in] pad_x Padding sizes x |
---|
1019 | * @param[in] pad_y Padding sizes y |
---|
1020 | * @param[in] stride_x Convolution stride along the width |
---|
1021 | * @param[in] stride_y Convolution stride along the height |
---|
1022 | * @param[in] dilation_x Dilation along width. Not used and intended for future enhancement. |
---|
1023 | * @param[in] dilation_y Dilation along height. Not used and intended for future enhancement. |
---|
1024 | * @param[in] bias Pointer to optional bias values. If no bias is |
---|
1025 | * availble, NULL is expected |
---|
1026 | * @param[in] input_offset Input tensor zero offset |
---|
1027 | * @param[in] filter_offset Kernel tensor zero offset |
---|
1028 | * @param[in] output_offset Output tensor zero offset |
---|
1029 | * @param[in,out] output Pointer to output tensor |
---|
1030 | * @param[in] output_x Width of output tensor |
---|
1031 | * @param[in] output_y Height of output tensor |
---|
1032 | * @param[in] output_activation_min Minimum value to clamp the output to. Range : {0, 255} |
---|
1033 | * @param[in] output_activation_max Minimum value to clamp the output to. Range : {0, 255} |
---|
1034 | * @param[in] out_shift Amount of right-shift for output |
---|
1035 | * @param[in] out_mult Output multiplier for requantization |
---|
1036 | * @return The function returns one of the following |
---|
1037 | * <code>ARM_MATH_SIZE_MISMATCH</code> - Not supported dimension of tensors |
---|
1038 | * <code>ARM_MATH_SUCCESS</code> - Successful operation |
---|
1039 | * <code>ARM_MATH_ARGUMENT_ERROR</code> - Implementation not available |
---|
1040 | * |
---|
1041 | * <b> Input constraints</b> |
---|
1042 | * ch_mult is multiple of 2 |
---|
1043 | * kernel_x is multiple of 2 |
---|
1044 | * |
---|
1045 | */ |
---|
1046 | arm_status arm_depthwise_conv_u8_basic_ver1(const uint8_t *input, |
---|
1047 | const uint16_t input_x, |
---|
1048 | const uint16_t input_y, |
---|
1049 | const uint16_t input_ch, |
---|
1050 | const uint8_t *kernel, |
---|
1051 | const uint16_t kernel_x, |
---|
1052 | const uint16_t kernel_y, |
---|
1053 | const int16_t ch_mult, |
---|
1054 | const int16_t pad_x, |
---|
1055 | const int16_t pad_y, |
---|
1056 | const int16_t stride_x, |
---|
1057 | const int16_t stride_y, |
---|
1058 | const int16_t dilation_x, |
---|
1059 | const int16_t dilation_y, |
---|
1060 | const int32_t *bias, |
---|
1061 | const int32_t input_offset, |
---|
1062 | const int32_t filter_offset, |
---|
1063 | const int32_t output_offset, |
---|
1064 | uint8_t *output, |
---|
1065 | const uint16_t output_x, |
---|
1066 | const uint16_t output_y, |
---|
1067 | const int32_t output_activation_min, |
---|
1068 | const int32_t output_activation_max, |
---|
1069 | const int32_t out_shift, |
---|
1070 | const int32_t out_mult); |
---|
1071 | #ifdef __cplusplus |
---|
1072 | } |
---|
1073 | #endif |
---|
1074 | |
---|
1075 | #endif |
---|