#include "sysdata.h" #include "esr.h" #include #include "main.h" #include "battery_voltage.h" #include "fast_current.h" int32_t current_buffer[SAMPLE_ARRAY_SIZE]; int32_t voltage_buffer[SAMPLE_ARRAY_SIZE]; //int32_t current_buffer_fast[SAMPLE_ARRAY_SIZE]; //int32_t voltage_buffer_fast[SAMPLE_ARRAY_SIZE]; extern uint16_t adc12Data[SAMPLE_ARRAY_SIZE][2]; int16_t ESR_Exec(void) { static int32_t last_refresh; int x; //Anzeige vor wieviel Sekunden zuletzt aktualisiert wurd. sys_data.s.values.esrCalcTime = sys_data.s.values.onTime - last_refresh; for (x=SAMPLE_ARRAY_SIZE-1; x>0; x--) { current_buffer[x] = current_buffer[x-1]; voltage_buffer[x] = voltage_buffer[x-1]; } // Neue Werte ins array aufnehmen current_buffer[0] = sys_data.s.values.batteryCurrent; voltage_buffer[0] = sys_data.s.values.batteryVoltage; //Suche Min und max werte im Array int32_t minU=INT32_MAX; int32_t maxU=0; int32_t minI=INT32_MAX; int32_t maxI=0; int32_t minIPos = -1; int32_t maxdIPos = -1; int32_t minUPos = -1; int32_t maxUPos = -1; //Suche min und max werte for (x=0; x < SAMPLE_ARRAY_SIZE; x++) { if (abs(current_buffer[x]) < minI) { minI = abs(current_buffer[x]); minIPos = x; } if (abs(current_buffer[x]) >= maxI) { maxI = abs(current_buffer[x]); maxdIPos = x; } if (abs(voltage_buffer[x]) < minU) { minU = abs(voltage_buffer[x]); minUPos = x; } if (abs(voltage_buffer[x]) > maxU) { maxU = abs(voltage_buffer[x]); maxUPos = x; } } //Suche Zeitpunkt der größten Änderung in I //Delta berechnen int32_t dI = abs (maxI - minI); int32_t dU = abs (maxU - minU); //Minimale Belastung Prüfen ob es genügent Änderungen gab // 1/20 des Nennstroms // Bei 100Ah Batterie mit 0,5 Std discharge --> 50A --> /20 =2,5 A int32_t min_dI; min_dI = sys_data.s.parameter.cellCapacity / sys_data.s.parameter.cellRatedDischargeTime; //Nennlaststrom in mA min_dI = min_dI / 20 ; int32_t min_dU = 25; if( dI < min_dI) { return -1; } //printf("dI change!\r\n"); if (dU < min_dU) { return -2; } //printf("dU change!\r\n"); int32_t dIMax=-1; int32_t dIx=-1;; int32_t dIMaxPos=-1; for (x=0; x < (SAMPLE_ARRAY_SIZE-1); x++) { dIx = abs(current_buffer[x+1] - current_buffer[x]); if (dIx > dIMax) { dIMax = dIx; dIMaxPos = x; } } if (dIMaxPos == SAMPLE_ARRAY_SIZE / 2) { //ESR berechnen! sys_data.s.values.esr = ( (double)dU / (double) dI) * 10000; last_refresh = sys_data.s.values.onTime; for (x=0; x < SAMPLE_ARRAY_SIZE; x++) { sys_data.s.values.current_buffer[(SAMPLE_ARRAY_SIZE-1)-x] = adc12Data[x][0]; sys_data.s.values.voltage_buffer[(SAMPLE_ARRAY_SIZE-1)-x] = adc12Data[x][1]; } } return 0; } int16_t ESR_FAST_Exec(void) { static int32_t last_refresh; int x; //Anzeige vor wieviel Sekunden zuletzt aktualisiert wurd. //Aktuell erfolgt nur die Anze der low speed Methode //sys_data.s.values.esrCalcTime = sys_data.s.values.onTime - last_refresh; //Suche Min und max werte im Array int32_t minU=INT32_MAX; int32_t maxU=0; int32_t minI=INT32_MAX; int32_t maxI=0; int32_t minIPos = -1; int32_t maxdIPos = -1; int32_t minUPos = -1; int32_t maxUPos = -1; //Suche min und max werte for (x=0; x < SAMPLE_ARRAY_SIZE; x++) { if (adc12Data[x][0] < minI) { minI = adc12Data[x][0]; minIPos = x; } if (adc12Data[x][0] >= maxI) { maxI = adc12Data[x][0]; maxdIPos = x; } if (adc12Data[x][1] < minU) { minU = adc12Data[x][1]; minUPos = x; } if (adc12Data[x][1] > maxU) { maxU = adc12Data[x][1]; maxUPos = x; } } //Delta berechnen int32_t dI = maxI - minI; //Nehme nicht mehr die gesamte maximale Differenz der Spannungen, sondern nehme das delt U wo auch das Delta I gemessen wurde //Funktioniert nur bei Synchroner Messug von Strom und Spannung //int32_t dU = maxU - minU; int32_t dU = adc12Data[maxdIPos][1] - adc12Data[minIPos][1]; //Umrechnung in mV / mA dI = dI * ((double) VREF / FAST_CURRENT_SHUNT_RESISTOR / FAST_CURRENT_I_SENSE_GAIN / FAST_CURRENT_ADC_RESOLUTION); dI = dI * (sys_data.s.parameter.batteryCurrentGainCorrectionFaktor / 1000000.0); dU = dU * (double )VREF * BATTERY_VOLTAGE_VOLTAGE_DIVIDER / BATTERY_VOLTAGE_ADC_RESOLUTION ; //Minimale Belastung Prüfen ob es genügent Änderungen gab // 1/20 des Nennstroms // Bei 100Ah Batterie mit 0,5 Std discharge --> 50A --> /20 =2,5 A int32_t min_dI; min_dI = sys_data.s.parameter.cellCapacity / sys_data.s.parameter.cellRatedDischargeTime; //Nennlaststrom in mA min_dI = min_dI / 10 ; int32_t min_dU = 10; if( abs(dI) < min_dI) { return -1; } //printf("dI change!\r\n"); if (abs(dU) < min_dU) { return -2; } //printf("dU change!\r\n"); int32_t dIMax=-1; int32_t dIx=-1;; int32_t dIMaxPos=-1; //Finde Position der flanke for (x=0; x < (SAMPLE_ARRAY_SIZE-1); x++) { dIx = adc12Data[x+1][0] - adc12Data[x][0]; if (dIx > dIMax) { dIMax = dIx; dIMaxPos = x; } } //if ((dIMaxPos < 5 ) || (dIMaxPos > (SAMPLE_ARRAY_SIZE-5) )) //{ // return -3; // } //ESR berechnen! sys_data.s.values.esr_fast = ( (double)dU / (double) dI) * 10000; last_refresh = sys_data.s.values.onTime; for (x=0; x < SAMPLE_ARRAY_SIZE; x++) { sys_data.s.values.current_buffer_fast[x] = (int32_t) adc12Data[x][0] - FAST_CURRENT_ADC_OFFSET ; sys_data.s.values.voltage_buffer_fast[x] = (int32_t) adc12Data[x][1] - BATTERY_VOLTAGE_ADC_OFFSET ; } return 0; }